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Abstract—In this paper, we confirm the hypothesis that the
magnetic field inside a building can vary significantly as a
function of height. We collected data with twenty magnetometers
spaced evenly from knee height to head height and mounted to a
ground robot, which we drove through two different buildings on
the campus of the University of Illinois at Urbana-Champaign.
We applied Gaussian process regression to build a map of the
magnetic field at each height. We compared these maps and saw
pairwise differences of more than 1 µT in up to 20% of each test
environment, a threshold that we argue would prevent meeting
the requirements of common indoor positioning applications.
These results call into question the planar assumption that is
commonly made when deriving methods of indoor positioning
that are based on the use of magnetic fields.

Index Terms—Magnetic Localization, Indoor Localization,
Magnetic Fields, Three-Dimensional Magnetic Field Analysis

I. INTRODUCTION

Methods of indoor positioning that are based on the use
of magnetic fields typically assume that these magnetic fields
do not vary with height [1]–[11]. This assumption is known
to be reasonable when the magnetic sensor is approximately
halfway between floor and ceiling in a building made only of
vertically oriented magnetic beams [12]. However, buildings
are made up of more than vertically oriented beams, and sensor
height can be well outside this range, depending on who (or
what) is carrying the sensor and on how it is being held
(Figure 1). The extent of the resulting variation in magnetic
field strength and the impact of this variation on positioning
accuracy cannot be derived from existing datasets, most of
which have been generated either by taking measurements
at a constant height or by aggregating all measurements,
regardless of height [13]–[15]. International standards for test
and evaluation of indoor positioning methods are consistent
with these existing datasets—they do not currently require
changes in sensor height with respect to a previously generated
map, and so also ignore the possible impact of the resulting
magnetic field variation on positioning accuracy [16].

In this paper, we confirm the hypothesis that the magnetic
field inside a building can vary significantly as a function
of height. We also show that, as a consequence of these
variations, localization and mapping requirements may be left
unachieved. This is particularly true when ground robots, like

Fig. 1. The approximate height of magnetometers on a phone held to the ear,
held in the hand during texting, and in a pocket. We also show the height of
a Clearpath Jackal robot.

the Clearpath Jackal robot shown in Figure 1, localize using
the same magnetic map as a pedestrian.

While the planar assumption in magnetic positioning cur-
rently appears quite ubiquitous, there is some prior work
that does not use this assumption. This work does not test
our hypothesis. Moreover, none of the results presented from
prior tests can be used to confirm or reject our hypothesis.
Akai and Ozaki sought to efficiently create maps for three
dimensional magnetic fields [17]. Most description of method-
ology and results in their work show the effectiveness of
using their approach to Gaussian process regression through
images. But these results do not enable one to conclude how
effective or ineffective the planar assumption is at different
heights. The magnetic field of a building was modelled in
three dimensions to calibrate and measure satellite magnetic
sources by Yamazaki et al [18]. Results here are presented
at heights more than 8.6 meters apart. A magneto-visual-
inertial odometry algorithm has also been developed under
the assumption that a magnetic field varies in three dimensions
[19]. In this work, results are presented in terms of positioning
error of the magneto-visual-inertial odometry system, which
we cannot use to draw direct conclusions about the planar
assumption.

We define the meaning of “significant variations of a mag-
netic field with respect to height” in Section II. We justify
our hypothesis for a simple, analytically tractable case study
in Section III. We then collect data of the magnetic field978-1-5386-5635-8/18/$31.00 c© 2018 IEEE



TABLE I
REQUIREMENTS FOR POSITIONING

Number Scenario Positioning Requirement Threshold
(1) BVI Assistant < 2 m 1 µT
(2) Retail Semantics < 0.2 m mean 1 µT

Fig. 2. The floor plan of the third floor of Talbot Laboratory used in the
MagPIE dataset. The approximate path used for the test is shown.

at twenty different heights in two different buildings at the
University of Illinois at Urbana-Champaign. Each magnetome-
ter is separated vertically by three inches (approximately one
standard deviation of the height of men and women) [20].
We describe this methodology in detail in Section IV. We test
our hypotheses with respect to maps generated with Gaussian
process regression (GPR) in Section V. We present conclusions
and future work in Section VI. Finally, we collected our
experiments into a publicly available dataset for testing the
validity of other localization or mapping methods with respect
to variations in height.1

II. A METRIC OF MAGNETIC FIELD DIFFERENCE IN
POSITIONING

In this section, we state the threshold that we will use in
the rest of the paper for determining “significant” differences
in the magnetic field with respect to height. This metric is
motivated by two different applications of indoor positioning
technology. First, we consider the use of indoor positioning
technology to serve as an assistant to the blind and visually
impaired (BVI). In a recent Federal Aviation Administration
report, a requirement that BVI assistants position users to
within two meters was proposed [21]. Using indoor positioning
on smartphones has also been proposed to provide information
to retailers regarding the effectiveness of certain displays and
placement of products in stores [22]. Based on the average
shelf space in US convenient stores, we set the requirement
for this retail positioning application to be less than 0.2 meters
on average [23]. A summary of scenarios and their positioning
requirements is given in Table I.

1http://bretl.csl.illinois.edu/indoor-magnetic-positioning

Using Monte Carlo localization and Gaussian process re-
gression on a portion of the MagPIE dataset, we find that
disturbances above 1 µT can cause our system to fail to
meet requirements. Figure 2 shows the path considered in the
MagPIE dataset [14]. The empirical cumulative distribution
functions (CDFs) of the positioning error that results from
different disturbances is shown in Figure 3. Therefore, in
subsequent sections of this paper, we will look for differences
in the magnetic field above 1 µT .

To produce this result, we apply a Monte Carlo localization
method with 1000 particles and residual resampling. We map
the magnitude of the magnetic field using the GPML toolbox
and KISS-GP [24], [25]. We begin by assuming that the
particles are initially distributed about the true starting point
with a covariance equal to the positioning requirement. We
also assume a constant velocity motion model of 1 meter per
second. We believe this is a reasonable model for pedestrians.
Based on prior research on pedestrian dead reckoning, we
assume that the standard deviation of our motion model grows
at 5.6% of the distance traveled [26]. Measurements are drawn
from the same distribution as the map generated with GPML
and KISS-GP. To test the impact of magnetic field disturbances
on positioning, we assume that the differences in the magnetic
field with respect to height are deterministic. Probabilistic
differences occur due to sensor noise and other artifacts of
experiment. We consider here the magnitude of the magnetic
field rather than the entire magnetic vector. Therefore, we add
a constant disturbance, d, to all of our measurements.

III. B-FIELD VARIATIONS WITH RESPECT TO A SINGLE
MAGNETIC BEAM

In this section, we justify our study of the planar assumption
by analytically considering a simple scenario: a single ferro-
magnetic beam. In particular, we will consider a rectangular
beam of dimensions 2` × 2h × 2w that is homogeneously
polarized in the x-direction (see Figure 4d). The solution for
the magnetic field about this beam is given by Yang et al and
is listed in Appendix A [27].

Based on experiments by Gozick et al, we choose the
magnetic dipole moment to be 1.55 × 103 Am2 [12]. This
produces a magnetic field of magnitude near 50 µT half a
meter away from the beam. We will consider the magnetic
field for a beam that is 0.2 m × 3.9 m × 0.2 m, which is a
typical floor to floor height of office buildings as suggested
by the Council on Tall Buildings and Urban Habitat [28].
Contours of the magnitude of the magnetic field in the x-y
plane are shown in Figures 4a, 4b, and 4c.

Horizontal lines on Figure 4 show the approximate heights
of a Clearpath Jackal robot, a phone placed in one’s pocket, a
phone held in one’s hand, and a phone held to one’s ear. Given
the position of a magnetometer (say Magnetometer 1), we find
the difference in the magnetic field measured by a second
magnetometer some distance, ∆h, below Magnetometer 1. The
thick, dashed, black lines in Figure 4 show the lines at which
this difference in the measured magnitude of the magnetic
field is equal to 1 µT : our previously stated threshold of

http://bretl.csl.illinois.edu/indoor-magnetic-positioning


(a) Empirical cumulative distribution of error for BVI case. (b) Empirical cumulative distribution of error for retail case.

Fig. 3. Empirical cumulative distribution functions of error for a simple Monte Carlo localization method for different degrees of constant magnetic field
disturbance. For both BVI and retail scenarios, we would like to ensure this disturbance is less than 1 µT .

significance. Shaded regions are areas where the difference
is greater than 1 µT . Figure 4a shows this threshold for
a height difference of 0.0762 m, the approximate standard
deviation of the heights of men and women. Figure 4b shows
this threshold for a height of 0.30 m, which is the approximate
height difference between an individual’s phone when held in
hand and in pocket. This is also approximately the 95% range
in the heights of men and women. Finally, Figure 4c shows
this threshold for a height difference of 0.75 m, which is the
approximate height difference between an individual’s phone
when held to the ear and in pocket.

These results demonstrate that, even for the case of a single
magnetic beam, differences in height can exceed our threshold
value. This occurs as the difference in height (∆h) grows
larger, as we move closer to the magnetic beam, and at lower
heights (of Magnetometer 1).

IV. EXPERIMENTAL METHODOLOGY

We collect measurements of the magnetic field as well as
the orientation and position of a Clearpath Jackal robot as it is
manually driven in two buildings at the University of Illinois
at Urbana-Champaign: a motion capture arena and inside the
Materials Testing Facility. The first location was used due to
the ease with which a system can be tested. The latter location
is used for test because it better reflects one of the five types
of buildings described in ISO/IEC 18305: a warehouse or
factory. On top of the Jackal robot, we attach a rig of 20
three-axis magnetometers spaced three inches apart vertically.
The magnetometers are connected to three Arduino Megas,
which are in turn connected to the robot’s main computer.
Position and orientation measurements of the robot and its
magnetometers are made in both buildings with a set of 24,
OptiTrack Flex 3 motion capture cameras. The Jackal has
many sensors included on-board the robot such as an inertial
measurement unit, wheel encoders, etc. We also collect this

data during our tests as well, though it is not critical to our
experiments here. Figure 5 shows the robot and the attached
rig on which magnetometers are mounted annotated with
distance measurements. We follow motion capture calibration
procedures provided by the manufacturer.

We use NXP MAG3110 magnetometers collecting at fre-
quencies between 15 and 30Hz to measure the magnetic
field at all 20 heights. These three axis magnetometers were
designed for use as an electronic compass and with location-
based services. The magnetometer is reported to have a range
of ±1000µT , a resolution of 0.10µT , and noise down to
0.25µT root mean squared. However, during our own testing,
we found that the NXP MAG3110 had higher noise than
reported (about 0.52µT ). Allan deviation plots of these mag-
netometers show that each sensor had a different RMS noise
and a rate random walk (see Figure 6). The magnetometers
are calibrated together for hard and soft iron biases while
attached to the robot. This is done outside and away from
buildings. Hard iron and soft iron biases are estimated using
the procedure described by Merayo et al [29]. This approach
projects data used for calibration to the unit sphere. We there-
fore scale our result by the magnitude of the magnetic field
at Urbana, Illinois as given by the International Geomagnetic
Reference Field model: 52.811µT . Because we calibrate the
system outside and subsequently perform our tests indoors,
we acknowledge several confounding factors may erroneously
appear in our dataset. For example, magnetometer temperature
sensitivity or hysteresis can introduce bias in our sensors.
To help account for these factors, we apply least squares to
our test data in order to estimate residual hard iron bias in
our sensors. If we assume that we collect n test points, for
magnetometer sensor measurements y1 and y2 we find a bias



(a) Threshold given height difference of 0.0762 m. (b) Threshold given height difference of 0.30 m.

(c) Threshold given height difference of 0.75 m. (d) Diagram of homogeneously polarized magnetic rectangular beam with
dimensions 2`× 2h× 2w and dipole moment density m.

Fig. 4. The contours of the magnetic field magnitude for a 3.9 m beam is shown along with the contour at which the difference between two magnetometers
is 1 µT . The approximate height of a person with a phone in pocket, held in hand, held to the ear, and the height of a ground robot are displayed. The height
variation in (a) is the standard deviation of heights of men and women. In (b) the height variation is approximately the difference between a phone in one’s
pocket and a phone in one’s hand. Finally, (c) considers the distance between a phone to one’s ear and a phone in one’s pocket.

∆1,2 that minimizes the following error

∆∗1,2 = arg min
∆1,2

n∑
i=1

‖y1,i − y2,i −∆1,2‖2

and we then apply the following correction to our second
sensor

ŷ2 = y2 + ∆∗1,2

where ŷ2 is a corrected set of measurements. We perform this
test relative to sensor number 11, which is near half the height
of the test rig.

To establish that differences in the magnetic field exceed
1 µT in a statistically significant way, we (1) produce maps
with Gaussian process regression (GPR) for each magnetome-
ter and (2) conduct an inequality test between two different

Gaussian process regressions. Since we produce maps with
GPR, at a given height we estimate

f(x) ∼ GP
(
µ(x), K̂(x, x′)

)
y = f(x) + ε, N (0, σ2

n)

where f is the estimated magnetic field magnitude described
as a Gaussian process with a mean µ and covariance K̂. All of
these variables are dependent on a two dimensional position
x. The predicted measurements made by the magnetometer y
involve the Gaussian process itself plus normally distributed
noise with variance σ2

n. Our test is a modified version of
the equality tests between two GPRs presented by Benavoli
and Mangili [30]. Given two Gaussian process regressions
f1 and f2 with mean functions µ1 and µ2 and covariance



Fig. 5. The Clearpath Jackal robot along with the experimental rig. An NXP
MAG3110 is attached to the end of each level. Several important dimensions
are also displayed.

Fig. 6. Allan deviation plots for our 20 magnetometers show that our sensors
have different RMS noise and rate random walk.

functions K̂1 and K̂2, the difference ∆f = f1 − f2 is
also a Gaussian process. The Gaussian process ∆f has mean
∆µ = µ1 − µ2 and covariance K̂∆ = K̂1 + K̂2. To test if the
difference between the maps of f1 and f2 are not equal, we
first minimize the difference ∆µ at a test point i according to
the rule (shown in Figure 7)

∆µi = µ1 − µ2 − d
where d = −1 if µ1 − µ2 < −1

d = µ1 − µ2 if − 1 ≤ µ1 − µ2 ≤ 1

d = 1 if µ1 − µ2 > 1.

If for a test point i, our revised difference ∆µi and variance
K̂∆ satisfies the condition

∆µ2
i

K̂∆

> χ2
1(α) (1)

where χ2
1(α) is the value of the χ2 CDF for one degree of

freedom at value α, then we can be confident with degree α
that the difference in the magnitude of the magnetic field at

Fig. 7. Minimized difference ∆µi with respect to actual difference µ1−µ2.

the test point is greater than 1 µT . For this work, we choose
an α of 0.95.

A test was conducted to verify that motors running on
the Jackal robot did not produce a magnetic field that was
noticeably measured by the magnetometers used in this ex-
periment. To conduct this test, we first sat the robot still with
no motors running and then had the robot spin its wheels
(while propped up to remain still) at its maximum rotations per
minute. We then compared the mean magnetic field measured
by the magnetometer closest to the motors in these two cases.
We found that the difference in the mean magnitude of the
magnetic field for these two cases is less than 5 nT , which is
far less than the sensitivity of the MAG3110 magnetometer.

Our methodology conservatively estimates differences in the
magnetic field due to our use of least squares to estimate resid-
ual hard iron bias offsets. Despite this, it is worth acknowledg-
ing several remaining confounding factors that may influence
our results. A variety of factors influence the measurements
taken by the MAG3110 sensor, which is a magnetoresistive
device. These factors include hysteresis with respect to the
applied magnetic field, temperature sensitivity, measurement
nonlinearity, sensor die-to-package misalignment, and sensor
noise rate random walk. The degree to which these factors
influence our results, however, may be categorized into at
least the following two notions. First is soft iron bias error.
We calibrate our system outside for soft and hard iron bias,
however, our additional least square correction only attempts
to address additional hard iron bias errors. We do not correct
any additional soft iron bias errors that may appear during
our tests. Second is temporal changes in hard iron bias. We
calibrate our magnetometers prior to test and apply least
squares on our test data as a single batch. If any of the factors
above cause the hard iron bias to change with time, then it
may act as a confounding factor in our experiment.

V. EXPERIMENTAL EVALUATION

We evaluate the magnetic field by generating GPR maps
of the two buildings. Due to the size of our dataset, we
map the magnitude of the magnetic field with the GPML
toolbox and KISS-GP as we did in Section II. Using a squared
exponential kernel with automatic relevance determination,
hyperparameters for the characteristic length scale, sensor
noise (σn in Section II), signal noise, and a constant non-
zero mean, we optimize the negative marginal log likelihood
using LBFGS. KISS-GP applies structured kernel interpolation
to an inducing point GPR method. In this case, we apply



(a) Percent of significantly different test points comparing magnetic
magnitude of maps generated from a pair of sensors in our motion capture
arena (bar plot).

(b) Percent of significantly different test points comparing magnetic
magnitude of maps generated from a pair of sensors in our motion capture
arena (heat map).

(c) Percent of significantly different test points comparing magnetic
magnitude of maps generated from a pair of sensors in the Materials
Testing Facility (bar plot).

(d) Percent of significantly different test points comparing magnetic
magnitude of maps generated from a pair of sensors in the Materials
Testing Facility (heat map).

Fig. 8. The percent of test points that have significantly different magnetic field norms between pairs of magnetometers. We can see that the further away a
pair of magnetometers are from eachother, the higher the percent of test points are different. Variations of the magnetic field with respect to height are also
greater the closer to the floor a magnetometer is.

this interpolation to the fully independent training conditional
(FITC) method with a grid of 1600 × 1600 inducing points.
Ninety percent of our data is used for training the GPR map.
Ten percent of our data is used for our statistical tests and for
evaluating the quality of the GPR map. Standard metrics for
measuring the quality of a GPR map include the standardized
mean square error (SMSE) and mean standardized log loss
(MSLL) [31]. Both metrics are presented for each map in Table
II.

Figure 8 shows the percent of test points wherein the
difference in the magnitude of the magnetic field between a
pair of sensors are found to be statistically significant. Figures
8a and 8c show the results as a 3D bar plot where the x and y
axes correspond to the numbers of the magnetometers that are
to be compared and the z-axis is the percent of test points that

were determined to be statistically significant. The same results
for the motion capture arena and the Materials Testing Facility
are shown in Figures 8b and 8d as heat maps. The color
corresponds the the percent of test points that were determined
to be statistically significant. Here, it can clearly be seen that
the further sensors are separated with respect to height, the
higher the percent of points that are significantly different.
Moreover, magnetometers closer to the floor in both buildings
appear to experience greater variations in the magnetic field
with respect to height than sensors near the top of the rig.
This is a predictable result using the model of a magnetic
metal beam considered in Section III. Finally, we see that
variations with respect to height are larger in the Materials
Testing Facility than they are in the motion capture arena.

Points wherein significant differences between measure-



TABLE II
STANDARDIZED MEAN SQUARED ERROR AND MEAN STANDARDIZED

LOG LOSS FOR GPR MAPS

Mag.
Number

Magnetometer
Height (cm)

Motion Capture
Arena

Materials Testing
Facility

SMSE MSLL SMSE MSLL
1 182.4 0.1911 -0.6324 0.1147 -0.8443
2 174.8 0.1515 -0.6999 0.05734 -0.9893
3 167.2 0.1226 -0.6928 0.03916 -1.0663
4 159.6 0.1636 -0.6490 0.04388 -1.0508
5 152 0.1950 -0.5934 0.04532 -1.0593
6 144.4 0.1619 -0.6158 0.03704 -1.0645
7 136.8 0.1574 -0.6430 0.02788 -1.1324
8 129.2 0.1966 -0.5857 0.03193 -1.1177
9 121.6 0.1877 -0.5961 0.02550 -1.1489
10 114 0.1585 -0.6736 0.01999 -1.1847
11 106.4 0.1356 -0.6790 0.01641 -1.2102
12 98.8 0.2066 -0.6259 0.02244 -1.1684
13 91.2 0.1140 -0.7498 0.01169 -1.2167
14 83.6 0.1041 -0.7971 0.01220 -1.2141
15 76 0.1148 -0.7543 0.03292 -1.0211
16 68.4 0.1562 -0.6748 0.01792 -1.1793
17 60.8 0.08813 -0.8697 0.009583 -1.1750
18 53.2 0.08179 -0.8413 0.01183 -1.1955
19 45.6 0.09117 -0.8412 0.01259 -1.1595
20 38 0.05328 -0.9578 0.01037 -1.1875

ments are found are not scattered evenly about the Materials
Testing Facility and the motion capture arena. Rather they tend
to occur only in certain areas of the mapped space. Presumably
these areas are near strong magnetic sources in the floor of the
buildings. Figure 9 shows all the test points used in the motion
capture arena and the Materials Testing Facility. At these plots,
we compare estimated measurements from Magnetometer 10
and Magnetometer 20. The former magnetometer is near the
height at which a smart phone might be held in one’s hand.
The latter magnetometer is closest to our robot. Test points
wherein anticipated measurements between these two sensors
are significantly different are shown as red circles.

VI. CONCLUSION

In this work, we sought to test the hypothesis that the
magnetic field inside a building can vary significantly as a
function of height. We do this by comparing the measurements
of magnetometers in two different buildings at 20 different
heights. We found that up to 20% of points in these two
buildings had pairwise differences greater than 1µT . We
confirmed our hypothesis analytically for a single magnetic
beam. This variation in height appears to be greater near the
floor of the building than it is near the height of an average
man or woman.

The possibility of positioning pedestrians and robots in the
presence of a magnetic field that may vary with height may
have several implications. First, because differences in the
magnetic field seem to be concentrated in certain regions of
a building (see Figure 9), it may be wise to include outlier
rejection as part of magnetic field-based localization schemes.
Alternatively, it may be help to classify the position of the
phone (held in hand, in pocket, etc.) prior to using magnetic
field data for positioning. Finally, it may be informative to

include height variations as part of standardized test and eval-
uation procedures for magnetometer-based indoor positioning
systems.

Future work consists of evaluating the magnetic field for
additional structures described in ISO/IEC 18305. Changes in
the direction of the magnetic field as well as its magnitude
should also be considered. Finally, an important expansion to
this work would be to experimentally show cases wherein the
planar assumption is reasonable.

APPENDIX A
FIELD OF A MAGNETIC BEAM

The equations of the magnetic field for a rectangular beam
of size 2`× 2h× 2w that is homogeneously polarized in the
x-direction (see Figure 4d) were stated by Yang et al [27].
These equations are

Bx =− µ0m

4π
[F1(−x, y, z) + F1(−x, y,−z)

+ F1(−x,−y, z) + F1(−x,−y,−z) + F1(x, y, z)

+ F1(x, y,−z) + F1(x,−y, z) + F1(x,−y,−z)]

By =
µ0m

4π
ln

(
F2(−x,−y, z)F2(x, y, z)

F2(−x, y, z)F2(x,−y, z)

)
Bz =

µ0m

4π
ln

(
F2(−x,−z, y)F2(x, z, y)

F2(−x, z, y)F2(x,−z, y)

)

where µ0 is the permeability of free space, m is the magnitude
of the magnetic dipole moment, the magnetic field vector is
B =

[
Bx By Bz

]T
, and

F1(x, y, z) = tan−1

(
(h+ y)(w + z)

(`+ x)
√

(`+ x)2 + (h+ y)2 + (w + z)2

)

F2(x, y, z) =

√
(`+ x)2 + (h+ y)2 + (w − z)2 + w − z√
(`+ x)2 + (h+ y)2 + (w + z)2 − w − z

.
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