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Abstract— Neural interfaces use estimates of brain or muscle
activity to generate control inputs for a prosthetic device.
Most previous work focuses on estimating neural activity more
accurately. This paper focuses on generating better control
inputs. It shows that changing the dynamic response of a
prosthetic device can make specific tasks easier to accomplish.
It also presents experimental results for which neural activity
is measured using surface electromyography, the prosthetic is
a 1-D cursor, and the task is to spell words from a menu of
characters.

I. INTRODUCTION

Neural interfaces use estimates of brain or muscle ac-

tivity to generate control inputs for a prosthetic device.

Many different sensors are now available to measure neural

activity, both invasive, such as intracortical devices that

observe ensemble spiking of individual neurons, and non-

invasive, such as electroencephalography and electromyog-

raphy. These sensors have been used to control a growing

number of prosthetic devices that include computer cursors,

cell phones, robotic manipulators, and wheelchairs. Appli-

cations include both restoring lost function, for example

with a neuroprosthetic limb, and enhancing or augmenting

normal function, for example with subvocal speech in noisy

environments.

One significant challenge in the design of neural interfaces

is the fundamental uncertainty about user intent. In particular,

the only way that the user can communicate their intent

to the prosthetic is through sensed neural activity, which is

typically noisy and low-bandwidth. As a consequence, most

previous work has focused on improving the measurement

and characterization of neural activity.

In this paper we take a complementary approach, focusing

on generating better control inputs. We view a neural inter-

face as a dynamic system connecting a user with a prosthetic,

described using the framework of stochastic control (Sec-

tion III). We model user behavior in the context of specific

tasks, and change the dynamic response of the interface to

make it easier for the user to accomplish these tasks. In par-

ticular, we show that system performance can be improved

by a control policy that takes advantage of how user intent

itself depends on the state of the prosthetic (Section IV).

This dependence effectively allows the interface to have more
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Fig. 1. A screenshot of the text interface.

information about intent than from measurement of neural

activity alone.

We demonstrate our approach in initial experiments with a

text interface (Section V), shown in Figure 1. This interface

is similar to an existing and highly successful one called

“Dasher” [26]. The prosthetic is a 1-D cursor, used to select

characters from a menu of fixed length. The menu consists of

the 26 letters of the English alphabet and a space character,

displayed as an underscore. These characters are not equally

spaced—instead, the portion of the menu occupied by each

character is determined by its conditional probability. This

probability increases the longer the cursor remains on any

given character. As the corresponding interval grows large, it

is recursively subdivided into a second menu of characters,

then a third, etc. We use a simple bigram frequency table

to generate conditional probabilities given previous char-

acters, though more sophisticated language models can be

accommodated. Effectively, this interface maps each possible

sequence of characters to a point on the unit interval.

The Dasher interface was designed for use with continuous

1-D or 2-D inputs. Experienced users can type up to 35

words per minute using a mouse, 25 words per minute using

an eye tracker, and 16 words per minute using a “breath

mouse,” which measures the movement of a user’s chest as

they breathe [26]. Recent work has integrated Dasher with

a neural sensor that uses electroencephalography to generate

continuous 1-D signals [11]. However, the reported typing

speed falls dramatically, to about 1-2 words per minute, or

about 5-10 characters per minute. Currently, this level of

performance is typical of other neural text interfaces.

In the experiments we describe here, the neural sensor is

a surface electromyography device, trained to recognize sub-

vocal expression of the words “left” and “right.” These words

are recognized correctly only 70-80% of the time, which

again is typical of neural interfaces. Rather than emulate

the Dasher interface—for example, moving the cursor a

fixed distance left or right in response to the sensed neural

commend—we chose a bisection strategy, moving the cursor

to the median of the posterior distribution. Our contribution
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was not to develop this strategy, which in any case is intu-

itive and has been used for other applications. Instead, our

contribution is in using this strategy as an example to show,

in both theory and experiment, that even without enhancing

the measurement of neural activity, the performance of a

neural interface can be significantly improved by changing

the dynamic response of the prosthetic device. In particular,

we show that the expected error in character selection—

measured as the distance between the desired character and

the cursor—decays exponentially rather than linearly.

We previously published a companion paper to this one,

which describes many of the same concepts [18]. We ex-

tend our previous work here by using the Dasher-like text

interface, which has improved our results significantly.

II. BACKGROUND

A. Neural interfaces

The basic communication nodes in the human nervous

system are neurons, which transmit information about the

sensory system, cognition, and motor planning. Neural in-

terfaces use measurements of these neural signals to control

computers or machines. These interfaces are classified by

whether they use invasive or non-invasive methods to extract

measurements. Invasive methods use intracortical sensors,

often placed in the primary motor cortex, that can observe

ensemble spiking of individual neurons. For example, these

methods have enabled primates to move robotic arms [22],

[25] and tetraplegial human patients to move a cursor and

read email [12]. Non-invasive methods place electrodes on

the surface of the skin to record signals such as the electroen-

cephalograph (EEG) and the electromyograph (EMG), which

reflect activity from large groups of neurons and muscle

fibers, respectively. For example, these methods have enabled

both cursor-control and text entry [9], [23], [24], [27].

B. Communication using surface electromyography

The interface we focus on in this paper uses surface-

EMG to capture subvocalization or “silent speech.” Subvocal

speech recognition uses analysis of muscle activity in the

tongue and throat to determine what someone is trying to

say. In some cases it may not be possible for a speaker to

produce sounds, for example if they are paralyzed below the

neck, or for a listener to hear sounds, for example if they

are working in a noisy environment. However, in these cases

the muscle activity in the tongue and throat is still present,

and is correlated with the intended speech. Work has been

done to improve signal processing and speech recognition

for surface-EMG [16]. Some of this work has begun to

integrate small, portable EMG sensors, like the one we use,

with prosthetic devices [3], [14], [15]. Our work focuses

instead on improving performance by changing the dynamic

response of the prosthetic device, rather than by enhancing

the recognition of words.

C. Text interfaces

In this paper we enable neural control of a text interface,

a common application of surface-EMG sensors. However,

unlike most other work with surface-EMG, we do not try

to identify a large vocabulary of spoken words or letters.

Instead, we only allow the user to give a binary input, by

saying either “left” or “right.” This binary signal moves

a 1-D cursor through a menu of characters. We take this

approach because we want to show what is possible even

with a limited neural signal. In this respect our text interface

is more strongly related to those that use EEG sensors. For

example, the P300 spelling paradigm measures event-related

potentials, characteristic responses to stimuli that can be

interpreted as binary signals [10]. It randomly illuminates

on-screen characters and selects the one that elicits the

strongest response. The performance of this type of interface,

in this case measured by the number of words per minute,

is strongly affected by the size, shape, and arrangement

of the on-screen menu, which can be designed based on

the statistical structure of language [19], [26]. Our work is

similar, but focuses on changing how a 1-D cursor moves

through a menu of fixed size and shape.

D. Solution approach

We model a neural interface as a discrete-time dynamic

system and focus on optimizing the dynamic response of this

system using a stochastic control framework [2]. Our goal in

this paper is to choose the response of a 1-D cursor to neural

activity in a way that maximizes the number of characters per

minute, or equivalently, words per minute, that can be typed

by the user. This problem has roots in the field of information

theory. Our solution approach, probabilistic bisection, has

been suggested as a way to do sequential coding [13], and

later modified to provide guaranteed performance bounds [5].

More recently this strategy has been applied to machine

learning, specifically to active learning [4], [6], [7], [21].

This work has also been revisited and generalized to indicate

precisely how to design feedback strategies that maximize

performance measures [8], [17], [20]. In particular, sensory

feedback should provide information about the posterior

distribution on user intent, in other words the interface’s

belief about user intent, and measured neural activity should

be interpreted as steering this distribution.

III. FRAMEWORK

In this paper we model a neural interface as a discrete-

time dynamic system connecting a user with a prosthetic

(Fig. 2). At each time step k, six variables describe the state

of this system:

θ user intent

xk desired control input to the prosthetic

yk measurement of neural activity

uk actual control input to the prosthetic

pk state of the prosthetic

fk sensory feedback.

For example, if the prosthetic is a robotic manipulator, then

we might define θ as the intended trajectory, xk as a set of

desired joint angles, yk as neural spiking in a region of motor
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Fig. 2. A neural interface is an interconnection between two dynamic
systems.

cortex, uk as a set of joint torques, pk as the actual angle

and angular velocity of each joint, and fk as the position

of the end-effector. These six variables evolve according to

four generative statistical models

behavior xk+1 ∼ P (xk+1|x0, . . . , xk, f0, . . . , fk, θ)

observation yk ∼ P (yk|xk)

actuation pk+1 ∼ P (pk+1|pk, uk)

feedback fk ∼ P (fk|pk)

and one time-varying deterministic function

policy uk = µk(y0, . . . , yk, p0, . . . , pk,

u0, . . . , uk−1, f0, . . . , fk−1).

Notice that both user intent and the desired control input

can only be observed indirectly, through the noisy mea-

surement yk. We assume that this measurement depends

neither on the state of the prosthetic nor on any previous

intent x0, . . . , xk−1. We abbreviate by

Ik = (y0, . . . , yk, p0, . . . , pk, u0, . . . , uk−1, f0, . . . , fk−1)

the vector of all information available when selecting a

control input uk, where I0 = (y0, p0). In this paper, we will

assume that models of behavior, observation, and actuation

are given. For simplicity, we will also assume that feedback is

full-state and error-free, so fk = pk. Then, we will be inter-

ested in choosing a policy π = {µ0(I0), . . . , µN−1(IN−1)}
that optimizes some performance metric. Our ultimate goal

in this paper is to maximize the number of characters per

minute that a user can type. As a heuristic, we will choose

as a metric to minimize an expected cost of the form

Jπ = max
θ,x0,p0

E {g (xN , pN )} .

We will show that performance can be improved by a policy

that takes advantage of how the user’s desired control input

depends on the state of the prosthetic. We will use this

dependence to better estimate the underlying user intent θ.

IV. APPLICATION TO THE TEXT INTERFACE

Consider the problem of selecting a single letter from

a menu, using the text interface described in Section I.

The prosthetic is a 1-D cursor that highlights letters in the

menu. The neural sensor is a surface-EMG device, trained to

recognize sub-vocal expression of the words left and right.

Whenever the surface-EMG device detects a word, the cursor

moves in response; otherwise, it remains motionless.

We model this problem using our framework from Sec-

tion III. Assume the menu of letters has length n. We refer

to each letter by its position and describe the menu by the

ordered set M = (1, . . . , n). We refer to the words left and

right by the integers −1 and +1, respectively. The state of the

prosthetic is the current position pk ∈ M of the cursor. The

control input is the amount uk ∈ Z that the cursor moves at

each time step k, where we require that pk + uk ∈ M . The

measurement is a word yk ∈ {−1,+1}. The feedback is the

entire state fk = pk. The user’s desired control signal is the

movement direction xk ∈ {−1,+1}. Finally, the user’s un-

derlying intent is a letter θ ∈ M , which we assume remains

fixed until it is selected.

We assume that these variables evolve according to the

following four models:

behavior xk+1 =

{

sign (θ − fk) w/probability 1 − α

− sign (θ − fk) w/probability α

observation yk =

{

xk w/probability 1 − β

−xk w/probability β

actuation pk+1 = pk + uk

feedback fk = pk

The model of behavior says that the user always wants to

move the cursor toward the desired letter, but has some

chance 0 ≤ α < 1/2 of making a mistake. The model of

observation says that our measurement of the desired move-

ment direction also has some chance 0 ≤ β < 1/2 of being

wrong. The model of actuation says that the cursor moves

exactly the distance specified by the interface. The model

of feedback says that the user perfectly observes the current

position of the cursor.

Our goal is to select a policy

π = {µ0(I0), . . . , µN−1(IN−1)}

for computing uk = µk(Ik) at each time step k that mini-

mizes the cost

Jπ = max
θ,p0∈M

E {|θ − pN |} .

over a finite horizon N . In other words, our goal is to bound

the worst-case expected error in cursor position, regardless

of the desired letter. In particular, we will be interested in

the rate at which this bound decreases with N , for a given

policy π. We are using this metric as a heuristic to maximize

the number of characters per minute that can be typed by a

user. We choose this metric in particular because it allows

us to give performance guarantees.

A. Noiseless case

In this case, we assume that the user never makes a mistake

and that our measurement of neural activity is perfect, so

both α = 0 and β = 0. As a result, we know the desired

movement direction xk = yk exactly. So a reasonable control

policy, which we call fixed offset, might be to move one step

in this direction after every measurement:

policy π uk = yk.
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This policy is easy both to understand and to implement. It

is clear that over a finite horizon N , the cost of this policy

is bounded by

Jπ ≤

{

maxθ,p0∈M (|θ − p0| − N) N < n − 1

0 otherwise

=

{

(n − 1) − N N < n − 1

0 otherwise.

So, the cost of this policy decreases linearly with N .

However, recall that user intent depends on the state of

the prosthetic. In particular, our model of behavior assumes

that the desired movement direction is always toward the

desired letter from the current position of the cursor. So every

measurement gives us information not only about xk, but also

about θ. This information is disregarded by the “reasonable”

policy we just described. Equivalently, we can say that this

policy was derived under the assumption that user intent

does not depend on the state of the prosthetic, a common

simplification.

If we instead take advantage of this dependence, we can

achieve better performance. In particular, assume that our

estimate of θ begins uniformly distributed in the ordered

set M = (l0, . . . , r0) where we define l0 = 1 and r0 = n.

We know that after each measurement, our estimate of θ will

be uniformly distributed in an interval (lk, rk) ⊂ (l0, r0) of

equal or lesser width. We adopt a bisection policy and choose

the input according to

policy π′ uk =

{

lk+rk

2
− pk if lk + rk is even

lk+rk±1

2
− pk if lk + rk is odd,

where we flip a coin to choose +1 or −1 in the latter case.

It is easy to show that over a finite horizon N , the cost of

this policy is bounded by

Jπ′ ≤

{

n2−N N < (log n/ log 2)

0 otherwise.

So, the cost of this policy decreases exponentially with N .

B. Noisy case

In the noiseless case, we showed that a change in the

control policy could improve performance, even without

enhancing our measurement of neural activity. Here, we show

an identical result when both α and β are non-zero. Even in

this case, when both behavior and measurements are noisy,

we can do no better on average than moving one step in the

direction of yk after every measurement, as in

policy π uk = yk,

without taking advantage of how intent, and in particular

the user’s desired control input, depends on the state of the

prosthetic. At each time step k, the cursor will move in the

wrong direction, away from θ, with probability

γ = (1 − α)β + α(1 − β).

So the expected distance moved toward the target after k
steps is at least

k (1(1 − γ) − 1γ) = k(1 − 2γ),

with a slightly larger value being obtained as pk nears 1 or n.

So we have

Jπ ≤ (n − 1) − N(1 − 2γ)

for all N < n − 1. Note that although this bound captures

the trend, we could obtain a slightly tighter one, as well as

a bound for N ≥ n − 1. So, the cost of this policy again

decreases linearly with N .

Just as before, the fact that intent depends on the state

of the prosthetic can be used to improve performance. In

particular, assume that at time k − 1, our estimate of θ has

some distribution P (θ|y0, . . . , yk−1) over the finite set M .

Then after measuring yk = +1, we can update this distribu-

tion with Bayes’ rule to find

P (θ|y0, . . . , yk) = η·



















(1 − γ) · P (θ|y0, . . . , yk−1)

for all θ ∈ (pk+1, . . . , n)

γ · P (θ|y0, . . . , yk−1)

for all θ ∈ (1, . . . , pk)

The update for yk = −1 is analogous. We adopt a probabilis-

tic bisection policy, which we denote by π′, and choose the

input uk that places pk+1 at the median of the distribution

over θ, so uk satisfies both

pk+uk−1
∑

i=1

p(θ = i|y0, . . . , yk) ≤
1

2

and
n

∑

i=pk+uk

p(θ = i|y0, . . . , yk) >
1

2
.

We know that this policy has cost bounded by

Jπ′ ≤ n2−cN

over a finite horizon N , for some constant c > 0 [5], [7],

[20]. In other words, the cost of this policy once again

decreases exponentially with N .

Note that one way to interpret this policy is from a

feedback information-theory perspective: the user’s desired

control input xk at each time k is independent of previous de-

sired inputs x0, . . . , xk−1 and feedback signals y1, . . . , yk−1.

This interpretation is fundamental to developing good control

schemes [8], [20].

V. RESULTS

A. Experimental setup

In the previous section we presented two control policies,

which we called “fixed offset” and “probabilistic bisection,”

for a 1-D menu-based text interface. The first policy moves

one step to the left or right in response to neural activity; the

second policy moves a variable distance based on an estimate

of the desired character. These policies were evaluated in

experiments with two healthy volunteers, 1 male and 1

female, aged 20, with normal vision.
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TABLE I

ERROR RATES

Subject 104 Subject 105

User error (α) 6% 4%
Device error (β) 5% 5%

TABLE II

AVERAGE PERFORMANCE

Subject 104 Subject 105
bisection fixed offset bisection fixed offset

chars. / minute 9.9 8.57 10.1 8.45
bits / minute 47.5 40.7 48.2 40.2

1) Signal acquisition: In order to extract neural signals,

we use a commercially available, self-contained, single-

channel surface-EMG sensor designed to be worn around

the neck [1]. This sensor amplifies, filters, digitizes and

transmits the EMG signal to a computer via a standard USB

interface. Software available with the device allows a user to

train it to recognize subvocal expression of the words “left”

and “right.” This sensor was originally designed to enable a

paralyzed patient to drive a motorized wheelchair.

2) Parameterization: To implement the probabilistic bi-

section control policy, we need to know the values of α
and β. These values measure the likelihood of mistakes made

by the user and the neural sensor, respectively. They were

computed in advance from experimental data.

To find α, subjects used the left and right arrow keys on

a standard keyboard as input, rather than the surface-EMG

sensor. They entered 200 characters from the short story “The

Door in the Wall” by H.G. Wells. If the subject provided no

input for 1 second, the letter highlighted at that time was

accepted. Bernoulli noise with parameter p = 0.85 was added

to the subject’s input in order to account for potential effects

of noise on user accuracy. For this first trial, we set α = 0.00
and β = 0.15. The estimate for α was then taken to be the

error of the subject’s actual input, neglecting the additional

noise, by comparing the cursor position to the position of

the target letter at each time step.

To find β, subjects used the surface-EMG sensor. First,

each subject trained this sensor to recognize subvocal ex-

pression of the two words “left” and “right.” Then, they

were presented with a series of 50 prompts, each asking the

subject, with equal probability, to subvocalize one of these

two words. The resulting error rate was used for β.

Table I summarizes the results of these experiments.

3) Online tests: Each subject was asked to write three

phrases: ”HEAD HURTS”, ”WHAT CHANCE”, and ”MINE

MOVED”. No additional noise was added to the neural

signal. They used the fixed-step policy first, then repeated

the experiment with the bisection policy. The length of time

before letter acceptance was increased to 1.5 seconds for both

policies, in order to capture the additional amount of time it

takes to generate a signal with surface-EMG as compared to

keyboard input.
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Fig. 3. Number of characters selected per minute for each phrase using
bisection algorithm, computed as an average over all of the runs for a
particular phrase. (Subject 104 is in blue and 105 in red)
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Fig. 4. Number of characters selected per minute for each phrase using
simple fixed offset input, computed as an average over all of the runs for a
particular phrase. (Subject 104 is in blue and 105 in red)

B. Data and analysis

We measured subject performance as the number of char-

acters selected per minute. Figure 4 shows a running average

over all trials with a 50-letter horizon. Average characters

per minute across all phrases and the corresponding average

effective bits per minute are summarized in Table II.

Despite widely varying subject characteristics, including

user and device error rate, clear trends emerge regarding the

performance of our two policies. Figure 4 shows that prob-

abilistic bisection improved performance for both subjects,

allowing significantly higher average throughput than fixed

offset for subjects 104 and 105.

VI. CONCLUSION

In this paper we considered the design of neural interfaces,

which use estimates of brain or muscle activity to generate

control inputs for a prosthetic device. We showed that

4165



changing the dynamic response of the prosthetic can make

specific tasks easier to accomplish, even without improving

the measurement of neural activity. We verified our results in

experiments with a text interface, where neural activity was

measured using surface electromyography and the prosthetic

was a 1-D cursor used to spell words from a menu of

characters. We are currently extending our approach to a

wider array of neural sensors and prosthetic devices, in

particular devices with more complex dynamics.
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