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Quasi-Static Manipulation of a Planar Elastic Rod
using Multiple Robotic Grippers
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Abstract— We consider the problem of manipulating a planar
elastic rod using robotic grippers which grasp the rod at
multiple points. Building upon previous work that considers
a rod held only at its ends, we show that manipulating a
rod held by n + 1 grippers is equivalent to planning a path
on a smooth 3n-dimensional manifold. Using multiple grippers
can be advantageous when manipulating around obstacles. We
establish upper and lower bounds on the number of grippers
needed for an equilibrium shape of the rod to pass between
obstacles in a desired way. Finally, we consider manipulation
planning when both ends of the rod are held fixed, and only
the grippers located along the interior of the rod can move.

I. INTRODUCTION

A schematic of a thin, inextensible, planar elastic rod held
by multiple robotic grippers is shown in Figure 1. In this
paper, we discuss the problem of finding a path of each
gripper which causes the elastic rod to move from one con-
figuration to another, while remaining in static equilibrium.
The problem may be simplified by considering each segment
of the elastic rod between the grippers individually. After
making this simplification, the algorithm for manipulating
an elastic rod held only at its ends described by Matthews
and Bretl [1] can be applied to each segment. This approach
relies on an optimal control formulation of the elastic rod [2],
and Pontryagin’s maximum principle [3] provides necessary
conditions for a configuration of the rod to be a local solution
of this optimal control problem. Using this approach, we
show that the set of all equilibrium configurations of a
planar elastic rod held by n + 1 robotic grippers is a smooth
manifold of dimension 3n that can be parameterized by a
single (global) coordinate chart. This result allows us to use
a sampling-based algorithm for manipulation planning.

Using multiple robotic grippers may be necessary when
manipulating an elastic rod around obstacles. We provide
conditions which guarantee the existence of a collision-
free equilibrium configuration of the rod with prescribed
boundary conditions in an environment with obstacles. We
also provide methods for computing upper and lower bounds
on the number of grippers needed to make a configuration of
the elastic rod pass through the obstacles in a desired way.
When the obstacles are polygons, the visibility graph of the
free workspace can be used to compute the lower bound.

Our ability to find a single global coordinate chart for
the 3n-dimensional manifold of equilibrium configurations
relies on the fact that the robotic grippers can move freely.
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Fig. 1: A planar elastic rod held by five robotic grippers.

A situation may arise in which the two ends of the rod must
be held fixed, and only the intermediate robotic grippers
can move. Our final contribution in this paper is to show
that the set of equilibrium configurations of a rod held by
n + 1 grippers with the two end grippers fixed is a smooth
manifold of dimension 3(n — 1). However, this space may
not be parameterized by a single global coordinate chart.
Methods of path planning on manifolds are described in [4],
and we implement a variation of these here to manipulate a
rod fixed at its ends and held by one gripper at its midpoint.
Manipulation of deformable objects is a well-researched
area in robotics that still presents many challenges. Kavraki,
along with Lamiraux [S] and Moll [6], developed a ma-
nipulation planning method which samples placements of
the robotic grippers and numerically approximates the de-
formable object’s shape. However, sampling gripper place-
ments can be problematic, since multiple equilibrium shapes
may exist for a given set of boundary conditions. This issue
was overcome by Bretl and McCarthy [7] for the problem
of manipulating a three-dimensional Kirchhoff elastic rod.
They showed that the set of all equilibrium shapes of the
rod is a smooth 6-manifold and used this result to develop a
sampling-based manipulation planning algorithm. The results
that we use from Matthews and Bretl [1] are the restrictions
of the results from Bretl and McCarthy [7] to the planar
case. While the contributions in this paper are theoretical,
the results are motivated by various applications, such as
knot tying and surgical suturing [8]—-[11], cable routing [12],
folding clothes [13], and surgical retraction of tissue [14].
Section II reviews manipulation planning of a planar
elastic rod held only at its ends [1]. Section III then extends
these results to an elastic rod held by multiple grippers.
This extension is based on the fact that each segment of
the rod between grippers can be analyzed individually. In
Section IV, a rod held by multiple grippers is considered
in an environment with obstacles. Conditions for existence,



along with upper and lower bounds on the number of grippers
needed for there to exist a configuration of the rod which
passes through the obstacles in a certain way are given.
Section V considers a rod held by multiple grippers with the
placement of the two end grippers fixed. We show that results
similar to those in Section III extend locally, but not globally,
to this case. Concluding remarks are given in Section VI.

II. MANIPULATION USING TWO GRIPPERS

In this section, we review a sampling-based manipulation
planning algorithm for a thin, inextensible, planar elastic rod
held at each end by a robotic gripper [1]. Assuming the
rod has unit length, the shape of the rod is described by a
continuous map ¢ : [0, 1] — SE(2), which satisfies
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is a basis for se(2). Let {Py, P2, Ps} be the corresponding
dual basis of se(2)*. We refer to ¢ and w together as
(¢,u): [0,1] — SE(2) x R. For convenience, we fix the
base of the rod at the origin, so that ¢(0) = e, where e is the
identity element in SE(2). The other end is held by a robotic
gripper which we assume can be placed at an arbitrary ¢(1).
Denote the set of all ¢(1) by B = SE(2). We say that (q, u)
is in static equilibrium if it is a local optimum of
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subject to ¢ = q (X1 + uX3)
q(0) =e, q(1)=0
for some b € B. Theorem 1, which is based on a geometric
statement of Pontryagin’s maximum principle [3], provides a
necessary condition for (g, u) to be a local optimum of (2).
Theorem 1: Define A = {a € R? : (a®,a®) # (0,0)}. A
trajectory (g,u) is a normal extremal of (2) if and only if
there exists a costate trajectory p : [0, 1] — se(2)* satisfying

)

pu =pou  flo = —pau i3 = —fi2 3)
¢=q(Xq1 +uX3) u=ps
with ¢(0) = e and (0) = 3°°_, a’P; for some a € A.
Proof: See Theorem 5 in [1]. [ ]

Let C C C*([0,1],SE(2) x R) denote the set of all
smooth maps (¢, u) : [0,1] = SE(2) x R which satisfy the
necessary conditions given in Theorem 1. Then any (g, u) €
C and the corresponding p are completely defined by the
choice of a € A. Denote the resulting maps by ¥(a) = (q, u)
and I'(a) = p. The following theorem provides a sufficient
condition for (g, u) to be a local optimum of (2).

Theorem 2: Let (q,u) = ¥(a) and p = T'(a) for some
a € A. Define the time-varying matrices

0 ps peo 000 0 ps0
F=1|-u 0 —m G:[ooo] H:[—u301}
0 -1 0 001 0 00

Solve the matrix differential equations
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M =FM J=GM+HJ )
with initial conditions M(0) = I and J(0) = 0. Then,
(¢,u) is a local optimum of (2) for b = ¢(1) if and only
if det(J(t)) # 0 for all t € (0,1]. A point ¢ € (0,1] at
which det(J(¢)) = 0 is called a conjugate point.
Proof: See Theorem 7 of [1]. |
The matrix function J(t) computed in (4) provides the
Jacobian of ¢(t) with respect to a. In particular, the j**
column of J(¢) is the coordinate representation of 85;’65;) with
respect to the basis {X1, X2, X3}. This will be useful in
Section V, when we place constraints on the end of the rod.
Theorem 2 provides a test of which extremals provided by
Theorem 1 are local optima of (2), i.e, which points a € A
produce local optima ¥(a) € C. Let Agape C A be the
subset of all @ which satisfy the conditions in Theorem 2,
let Cyaple = ‘IJ(AstabIe) C C, and let Bygple = {Q(l) € B:
(¢, u) € Cyaple }- Also, define the map @ : C — Bby (q,u) —
q(1). The following two results show that each (¢,u) € C
corresponds to a unique a € A and that there is a smooth
dependence between points in Aggple, Bstable, and Cygaple-
Theorem 3: C is a smooth 3-manifold with smooth struc-
ture determined by an atlas with the single chart (C, ¥ ~1).
Proof: See Theorem 6 of [1]. |
Theorem 4: The map ® o ¥| 4., : Asable — Bstable 1S @
local diffeomorphism.
Proof: See Theorem 8 of [1]. |
From Theorem 3, we see that planning a path of the rod
is equivalent to planning a path in the three-dimensional
space A. Theorem 4 says that any path in Agape can be
implemented by a path of the robotic gripper in Bygpie. These
results allow for a sampling-based planning algorithm to be
used, in which we sample points in A, check if they are
members of Agpe (using the test in Theorem 2), and then
attempt to connect them with straight lines in Aggpe [1].

III. MANIPULATION USING MULTIPLE GRIPPERS

In this section, we again consider a planar elastic rod
which has unit length. However, we now assume that n + 1
robotic grippers hold the rod at the fixed points {p = 0 <
t1 < ... < t, 1 for some positive natural number
n. Since we are considering quasi-static manipulation, if
the " gripper is fixed, the segment of the rod from #;_;
to t; behaves according to our description in Section II.
Therefore, rather that attempt to solve for the entire shape
of the rod, we can consider each of the n segments between
the grippers individually. We now have n optimal control
problems, where the initial state for the 7" problem depends
on the final state of the ' — 1 problem.

Our choice in Section II to place the base of the rod at
¢(0) = e was done for convenience, and Theorems 1-4 apply
when ¢(0) is fixed at some other location in SE(2). If ¢(0) is
fixed at an arbitrary by € SE(2), equilibrium configurations
of the rod are found by solving (2), and then rotating and
translating ¢(¢) so that ¢(0) = by. This translation and
rotation is done by multiplying ¢(¢) by the matrix by, and
since by is invertible, the map between solutions (g, u) based



Vi Vo

(a)

(b) ©

M/

(@ (e)

® (€9)

()

® 0

Fig. 2: A planar elastic rod held fixed at its base and manipulated by four movable robotic grippers.

at ¢(0) = e and ¢(0) = by is bijective, smooth, and has a
smooth inverse. We conclude that finding configurations of a
rod held by n+1 grippers is equivalent to solving n optimal
control problems (each based at ¢(0) = ¢), and then piecing
these individual solutions together. Therefore, we must solve
the n optimal control problems

1 ti—ti—1
0

¢ = qi (X1 +u; X3)

¢:(0) =e, qi(ti —ti—1) =10
for some b; € B, i = 1,2,...,n. If {(g;,u;)}, is a set
of solutions to these n optimal control problems, then the
configuration of the rod (¢, u) is given by

q(t) = b1b2...bi_1qi(t—ti_1), U(t) :ui(t—ti_l)
if t_ <t<t

minimize
qi, Ui
)]

subject to

(6)

where b1bs...b;_1¢;(t — t;—1) means multiplication by the
matrices by, bs,...b;_; € SFE(2). This ensures that the i‘"
segment of the rod begins where the i** — 1 segment ends.
In Section II, our assumption that the rod has unit length
was made for convenience. For a rod with length ¢, Theorems
1 and 2 are still applicable, with the interval [0, 1] replaced by
[0, 7]. Therefore, we may apply Theorems 1 and 2 to equation
(5), with the interval [0, 1] replaced by [0,¢; — t;—1].
Theorems 3 and 4 can also be extended to the multi-
gripper case. For each ¢ € {1,...,n}, define C; and ;, as
was done in Section II, for the i** optimal control problem in
(5). Theorem 3 says that each C; is a smooth 3-manifold with
the single chart (C;, \IJZ-_I). Example 1.34 in Lee [15] states
that the product of n smooth manifolds is itself a smooth
manifold. Therefore, the product C; X ... XC,, is a smooth 3n-
manifold with the single chart (C; x... xCp,, 7! x ... x U, 1).
Thus, each shape of the elastic rod corresponds to a unique
point in A; x ... x A, = A", and planning a path of the rod
between two configurations is equivalent to planning a path
between two points in the 3n-dimensional space A™ C R3™.
Next, for each i € {1,...,n}, define ®;, Asable,i» Bstable. i
and Cgple,i» as was done in Section II, for the ith optimal
control problem in (5). Proposition 4.6 in Lee [15] states
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that any finite product of local diffeomorphisms between
smooth manifolds is a local diffeomorphism. Therefore, since
each map ®; o V| 4., : Asavle,i — Bstable,i 18 a local
diffeomorphism by Theorem 4, the product of these maps
which sends points in Aggpie,1 X ... X Agtable,n, t0 points in
Bitable,1 X .. X Bstable,n is a local diffeomorphism. Thus, any
path of the rod in Aggple,1 X ... X Asable,n, can be implemented
by a path of the robotic grippers in Bguapie,1 X ... X Bstable,n-

As was the case for two grippers, these results allow
for a sampling-based algorithm for manipulation planning
to be used, such as PRM [16]. In this algorithm, points
a = (ay,...,a,) € A" are sampled, where each a; € A;.
Then, for ¢ = 1, ..., n, a candidate solution of the ith optimal
control problem (5) is found using Theorem 1 with a; as
the initial condition for the costate trajectory. The sufficient
condition in Theorem 2 is then checked for each of the n
optimal control problems to determine if a; € Agable,i- If
each a; € Agaple,i» then we say that ¢ € A” is an admissible
configuration of the rod, and a is added as a node in the
roadmap. If two nodes in the roadmap are connected by a
straight-line path in 4™ such that each point on the path is an
admissible configuration of the rod, then this path is added
as an edge to the roadmap. At any point a € A" along this
path, the shape of the rod can be constructed using (6) and
the n solutions of (5) corresponding to a € A™.

Figure 2 shows a sequence of configurations of the rod as
it is manipulated between two equilibrium shapes. The rod is
held by five grippers, with the far left gripper in each frame
fixed. Figures 2(a)-(f) correspond to a straight line path in
A%, as do Figures 2()-(j). Thus, the sequence of frames in
Figure 2 corresponds to a continuous path in .A*. Note that
the gripper positions in the first and last frames are identical,
but the configurations in these two frames are different, and
therefore correspond to different points in A%

IV. BOUNDS ON THE NUMBER OF GRIPPERS
NEEDED IN ENVIRONMENTS WITH OBSTACLES

In this section, we consider manipulating an elastic rod
in an environment with obstacles using multiple grippers. A
collision checker which detects contact between the rod and
obstacles can easily be added to the sampling-based planning
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Fig. 3: A planar elastic rod held fixed at its base and manipulated by three robotic grippers in an environment with obstacles.

algorithm described in the previous section. An example
of manipulating a rod using three movable grippers in an
environment with obstacles is shown in Figure 3. The path
of the rod in Figure 3 corresponds to a continuous sequence
of straight lines between five points in A3.

While checking for collisions during manipulation plan-
ning is easy, finding start and goal configurations of the rod
which pass between the obstacles in a particular way can
be challenging. When we say “pass between the obstacles
in a particular way”, we mean that the shape of the rod
is homotopic to a given curve in the space with obstacles.
We now give conditions under which a local solution to (5)
which passes through the obstacles in a desired way exists.
We also establish bounds on the number of grippers needed
to make such a shape of the rod a local optimum of (5).

We begin with a more formal definition of the problem. Let
W C R? be the workspace in which we want to manipulate
the rod, and let Wy,.. C W be the workspace which is not
occupied by obstacles. Assume that the desired placement
of the end of the rod b, € SE(2) is given such that its
position component, denoted by (,, Yr ), lies in Wyee. Also
assume that a continuous curve, denoted by f : [0,1] — R?,
which begins at (0,0), ends at (z, y,), and lies completely
in Wyyee is given. We want to find a configuration ¢(¢) of
the rod, ¢.e., n solutions of (5) pieced together using (6)
to form ¢(t), for some natural number n, some sequence
0 <t <..<tyh_1 <1, and some sequence of points
{b;}1=} C B, such that if (2(t),y(t)) denotes the position
component of ¢(t), we have (x(t),y(t)) € Wyyee forall t €
[0,1], and (z(t),(t)) is homotopic to f(t), i.e., f(t) can be
continuously deformed into (x(t),y(t)) without intersecting
any of the obstacles in W. If such a solution does exist, we
would also like to establish upper and lower bounds on n.

The following definition of an inflection point will be
useful in the analysis of this problem. For any curve f €
C?([0,1],R?), let 6 : [0,1] — ST denote the angle between
the tangent line to f and the horizontal axis, positive when
measured counter-clockwise. Since f has continuous second
derivatives, 6 will be smooth, and 6 will be continuous. We
call ¢ an inflection point if §() = 0. The next lemma relates
conjugate points defined in Theorem 2 to inflection points.

Lemma 1: Let (g;,u;) be a normal extremal of (5), and
let f; : [0,t; —t;_1] — R? be the curve in R? corresponding
to the position component of ¢;(¢). If f;(¢t) contains no
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inflection points, then the interval (0,¢; — ¢;_1] contains no
conjugate points, so (g;,u;) is a local optimum of (5). If the
interval (0,t; —t;_1] does contain conjugate points, then they
are isolated, and the first conjugate point occurs between the
first and third inflection point of f;(t).

Proof: See Theorem 5.1 of [2]. |
We first address the question of existence. Consider the
solution ¥(a;) of (5) with a; = (0,0,¢) € A; for some
¢ € R\ {0}. Using a; as the initial condition for (3), we see
that [y = fiz = f13 = 0, 50 1 (t) = p2(t) = 0 and u3(t) = c
for all ¢ € (0,¢; — t;—1). Therefore, (g;,u;) satisfies

gi = ¢ (X1 +cX3)

which prqduces a circular arc of length t; — ¢, with
curvature 6(t) = ¢ # 0. Thus, a circular arc with any nonzero
curvature is a local optimum of (5) for some b; € B. This
leads to the following theorem on the existence of solutions.

Theorem 5: If there exists a smooth injective function f :
[0,1] — R? of unit length such that

1) f(t) € Wipee forall ¢ € [0, 1]

2) £(0) = (0,0) and £(1) = (w, yn):

3) the tangent to f(0) is horizontal and the tangent to

f(1) is aligned with the rotation component of b,
4) f is homotopic to f ,
5) and f is comprised of a finite number of circular arcs,

then there exists a configuration of the rod (q(t), u(t)) which
does not intersect the obstacles and is homotopic to f.
Proof: Given the function f, let m denote the number
of circular arcs in f, let 0 < ¢ < ... < t,,,_1 < 1 denote the
arc-lengths along f where the circular arcs meet, and let ¢;
denote the curvature of the i*” circular arc. For i = 1, ...,m,
place the gripper b; at f(t;) such that it is aligned with the
tangent to f(¢;), and define a; = (0,0, ¢;). Then the solution
q(t) of (5) and (6) defined by this choice of a;, i =1,...,m
traces out the curve f(¢) in the plane. Thus ¢(t) does not
intersect the obstacles and is homotopic to f . |
If a function f(¢) satisfying the conditions in Theorem
5 is found, and m is the number of circular arcs in f(t),
then m + 1 is an upper bound on the minimum number
of grippers needed to hold the rod in the desired shape.
This upper bound can be made tighter by considering all
curves f : [0,1] — R? which satisfy the conditions in
Theorem 5. If m™ is the smallest number of circular arcs



in any of these curves, then at most m* + 1 grippers are
needed. This problem itself can be cast as an optimal path
planning problem, in which we attempt to find the control
u(t) in the space of piecewise constant functions which has
the fewest points of discontinuity, subject to the dynamics of
¢q(t) in equation (1), the given boundary conditions on ¢(0)
and ¢(1), the condition that the curve traced by ¢(t) in R?
is homotopic to f, and the condition that the curve traced
by ¢(t) in R? does not intersect any of the obstacles. We do
not treat this problem here, and leave it for future work.

We now compute a lower bound on the number of grippers
needed to hold the rod in a desired configuration. Let .S be the
set of all curves f € C2([0,1],R?) which satisfy conditions
1, 2, and 4 in Theorem 5, and define the map g : S — N
such that g(f) is the number of inflection points on f. Also,
let |-] denote the floor function.

Theorem 6: If | = ?1612 g(f), then at least |1/3]| + 2 grip-

pers are needed to hold the rod in the desired configuration.

Proof: One gripper is needed at each end of the rod.
From Lemma 1, the first conjugate point occurs between the
first and third inflection points. Thus, at least one gripper
is needed between every three inflection points, i.e., at least
|{/3] grippers are needed between the end gripper. ]

In the case when the obstacles in W are polygons, the
visibility graph of Wy,.. can be used to find the curve
with the minimum number of inflection points. For a given
W ree, consider all the curves in the visibility graph which
satisfy conditions 2 and 4 in Theorem 5. Each of these
curves consists of a continuous sequence of straight lines.
For each curve f(t), define 6(t) as described earlier (note
that 6(¢) will no longer be smooth, but will be a piecewise
constant function). Pick the curve f(t) for which 6(¢) has the
fewest number of constant intervals which are local extrema
compared to neighboring constant intervals. An example of
how to compute the number of extremal intervals of 6(t)
for a particular curve f(¢) in a visibility graph is shown
in Figure 4. The piecewise constant function in Figure 4(b)
shows 6(t) for the red path in the visibility graph in Figure
4(a) connecting the two green circles. The curve 6(t) has
two intervals which are local extrema, shown in green.

The number of constant intervals of 6(¢) which are local
extrema gives the minimum number of inflection points a
continuous function that connects (0,0) to (z,y») and
is homotopic to f must have, which can then be used to
compute a lower bound on the number of grippers needed.

V. MANIPULATION WITH A FIXED END GRIPPER

In this section, we consider a variation of the problem
described in Section III. We again want to manipulate an
elastic rod held by n+-1 robotic grippers, and we assume that
the workspace of the rod contains no obstacles. As in Section
III, we assume that the first gripper holds the base of the rod
fixed at ¢(0) = e, but now we also assume that the gripper
at the other end of the rod cannot move. Therefore, both
ends of the rod are held stationary and only the intermediate
robotic grippers can be used to manipulate the rod.
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Fig. 4: (a) The visibility graph of an environment with
obstacles, with a path shown in red connecting the two green
circles, and (b) 6(¢) for the red path. 6(t) has two intervals
which are local extrema, shown in green.

Our ability to explicitly parameterize the manifold C; X
.. X Cy, in Section I using the single chart (C; x ... X
Cn, U7 x ... x U1) was dependent upon the fact that no
constraints were placed on the robotic gripper placements
b1,b2, ..., b,. With the end of the rod fixed, we can no longer
derive a global coordinate chart. We can, however, use the
fact that the map sending points in Agable,1 X ... X Astable,n
to points in Biable,1 X ... X Biavle,r, i a local diffeomorphism
to describe local parameterizations of C; X ... X C, which
satisfy the constraint on b,,.

We begin by assuming that n > 0, b € SE(2), and a
sequence 0 =ty < t; < ... < t,_1 <t, =1 are given, and
we consider the optimal control problems in (5) for some
b € SE(2), i = 1,...,n — 1, with the added constraint
q(1) = b, with ¢ as defined in (6). If (¢, u) is a local optimum
of (5), and (a1, ...a,) € A" is the corresponding set of a;’s,
then a; € Agupie,; and b; € Bgaple,; for ¢ = 1,...,n. From
Section III, the map taking points in Agapie,1 X .. X Astable,n
to points in Bygpie,1 X ... X Btaple, 18 a local diffeomorphism.
Therefore, the implicit function theorem (Theorem C.40 in
[15]) can be applied, which says there exists a neighborhood
V C Asable,r X oo X Agable,n, Of (a1, ...a,,) such that the
points in V' which place the end of the rod at b are a smooth
manifold of dimension 3(n — 1), and a,, can be expressed
as a smooth function of (ay,...a,—1). Planning a path of
the rod between two equilibrium shapes in W(V') that satisfy
the boundary condition ¢(1) = b is equivalent to planning
a path between two points in the 3(n-1)-dimensional space
Asgtaple,1 X ... X Agtable,n—1. It is important to note that this is
a local result, and a global chart, such as the one found in
Section III, may or may not exist.

This manipulation problem is analogous to motion plan-
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Fig. 5: A planar elastic rod held fixed at its ends and
manipulated by one movable gripper.

ning for a closed kinematic chain, a classical planning
problem in robotics [17]. Drawing from this analogy, we can
attempt to find a path between two equilibrium shapes of the
rod by using a sampling-based algorithm to plan a path in
Astable,1 X ... X Agtable,n—1, and at each point along this path,
numerically solve for a,, € A,, which places the end gripper
at b. Given a point in Aggple,1 X ... X Agtable,n—1, We first
find the corresponding solutions of (5) for ¢ = 1,...,n — 1,
and then define ¢(¢) on the interval [0, ¢,_1] using (6). We
now must solve equation (5) for ¢ = n with the boundary
condition ¢, (1 —t,_1) = (q(t,_1))"b.

A shooting method was implemented in which an initial
guess for a,, is given, and this guess is iteratively adjusted
using the Newton-Raphson method until the boundary con-
dition is satisfied. This approach relies on the Jacobian of ¢,
with respect to a,,, which is provided by the computations
in Theorem 2. Figure 5 shows a path generated using this
approach. The rod is held by two stationary grippers at its
ends and one movable gripper at its midpoint. The path of the
left segment of the rod corresponds to a straight line in Aj;.
It is important to note that multiple equilibrium shapes of
the right rod segment which satisfy the gripper placements
in Figure 5(c) may exist. Since we cannot explicitly pick
values of as which satisfy the boundary conditions and we
must instead numerically solve for as, we cannot guarantee
which equilibrium shape the right segment of the rod will
converge to. Thus, different paths of the left rod segment
between the configurations in Figures 5(a) and 5(c) may lead
to different configurations of the right segment in Figure 5(c).

VI. CONCLUSION

We have shown that the set of equilibrium configurations
of a planar elastic rod held by n 4+ 1 robotic grippers
(with one gripper holding the base of the rod fixed) is a
smooth 3n-dimension manifold that can be parameterized by
a single global coordinate chart. Next, we considered a rod
held by multiple grippers in an environment with obstacles.
Conditions were given which guarantee the existence of an
equilibrium configuration of the rod which passes between
the obstacles in a desired way. Methods for calculating upper
and lower bounds on the number of grippers needed to
make such a configuration of the rod a stable solution were
also shown. We then considered manipulation planning for
a rod whose ends are held fixed, and provided an approach
for manipulating the rod between equilibrium shapes which
satisfy the imposed boundary conditions.

60

Directions for future work include extending the results
in this paper to a three-dimensional elastic rod held by
multiple grippers and experimental implementation of the
proposed sampling-based planning algorithms. Another in-
teresting extension is to allow the grippers to release and
regrasp the rod or to slide along the rod. It is desirable
for the rod to remain in static-equilibrium during release
and regrasping. This can be ensured by requiring the costate
trajectory to be continuous across the gripper. This constraint
may be related to the notion of transit and transfer paths in
manipulation planning for robot manipulators moving objects
around obstacles [18]. To allow the grippers to slide along
the rod, the lengths ¢, ...,%,—1 in (5) could be allowed to
vary rather than remaining fixed.
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