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Abstract

In this paper we study the quasi-static motion of large legged ro-
bots that have many degrees of freedom. While gaited walking may
suffice on easy ground, rough and steep terrain requires unique se-
quences of footsteps and postural adjustments specifically adapted
to the terrain’s local geometric and physical properties. In this pa-
per we present a planner that computes these motions by combining
graph searching to generate a sequence of candidate footfalls with
probabilistic sample-based planning to generate continuous motions
that reach these footfalls. To improve motion quality, the probabilis-
tic planner derives its sampling strategy from a small set of motion
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primitives that have been generated offline. The viability of this ap-
proach is demonstrated in simulation for the six-legged Lunar vehi-
cle ATHLETE and the humanoid HRP-2 on several example terrains,
including one that requires both hand and foot contacts and another
that requires rappelling.

KEY WORDS—Motion planning, legged robots, humanoids,
probabilistic sample-based planning, motion primitives

1. Introduction

One of the main potential advantages of legged robots over
other types of mobile robots (such as wheeled and track ro-
bots) is their mechanical ability to navigate on varied terrain.
However, so far this ability has not been exploited fully. One
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Fig. 1. The ATHLETE Lunar vehicle (Wilcox et al. 2007).

Fig. 2. Pictures of Lunar terrain from the Apollo missions (Heiken et al. 1991).

reason is the lack of an adequate motion planner capable of
computing sequences of footsteps and postural adjustments
specifically adapted to the local geometric and physical prop-
erties of the terrain. In this paper we describe the design and
implementation of a motion planner that enables legged ro-
bots with many degrees of freedom (DOFs) to navigate safely
across varied terrain. Although most of this planner is general,
our presentation focuses on its application to two robots: the
six-legged Lunar vehicle ATHLETE (Wilcox et al. 2007) and
the humanoid HRP-2 (Kaneko et al. 2004).

1.1. ATHLETE and HRP-2

ATHLETE (shown in Figure 1) is large and highly mobile.
A half-scale Earth test model has a diameter of 2.75 m and
mass of 850 kg. It can roll at up to 10 km h�1 on rotating
wheels over flat smooth terrain and walk carefully on fixed
wheels over irregular and steep terrain. With its six articu-
lated legs, ATHLETE is designed to scramble across terrain so
rough that a fixed gait (for example, an alternating tripod gait)

may prove insufficient. Such terrain is abundant on the Moon,
most of which is rough, mountainous and heavily cratered—
particularly in the polar regions, a likely target for future sur-
face operations. These craters can be of enormous size and are
filled with scattered rocks and boulders of a few centimeters to
several meters in diameter (Figure 2). Crater walls are sloped
at angles of between 10� and 45�, and sometimes have sharp
rims (Heiken et al. 1991).

In comparison, HRP-2 (Figure 3) is relatively light and
compact, with height 1.54m and mass 58kg, and is capable
of moving at up to 2.5km/h. Using a fixed gait, it can walk
on flat surfaces, along narrow paths, and up stairs of constant
height. It has also been demonstrated crawling through tun-
nels, climbing stairs while holding onto handrails, and get-
ting up after falling down (Harada et al. 2004� Kaneko et al.
2004) by performing specific motions that are carefully hand-
crafted through a long trial-and-error process. Like ATHLETE,
HRP-2 is potentially capable of scrambling across rougher ter-
rain, such as irregular outdoor terrain or urban rubble, where a
fixed gait may be insufficient. An adequate planner is needed
to make this capability a reality.

 at UNIV OF ILLINOIS URBANA on September 19, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Hauser, Bretl, Latombe, Harada, and Wilcox / Motion Planning for Legged Robots on Varied Terrain 1327

Fig. 3. The humanoid HRP-2 (Kaneko et al. 2004) and an ex-
ample of varied terrain.

1.2. Other Robots and Applications

A variety of previous works have also focused on enabling ro-
bots to traverse irregular terrain. Locomotion of humanoids
across somewhat uneven terrain has been studied by Kuffner
et al. (2003) and Zheng and Shen (1990). Other legged
robots, including quadrupeds (Hirose and Kunieda 1991),
hexapods (Song and Waldron 1989� Krotkov and Simmons
1996), parallel walkers (Yoneda et al. 1999) and spherically
symmetric robots (Pai et al. 1995), are capable of walking
across rougher terrain. Wheeled robots with active or rocker-
bogie suspension can also traverse rough terrain by changing
wheel angles and the position of the center of mass (CM) (Iag-
nemma et al. 1999� Estier et al. 2000� Lauria et al. 2002).
Careful descent is possible by rappelling as well, using ei-
ther legs (Wettergreen et al. 1993� Hirose et al. 1997� Bares
and Wettergreen 1999) or wheels (Mumm et al. 2004). In most
cases, however, these robots perform tediously hand-crafted or
teleoperated motions. The terrain we consider for ATHLETE
and HRP-2 is also more irregular and steep than in most pre-
vious applications, although not as steep as for free-climbing
robots (Bretl 2006).

Careful walking also resembles dexterous manipulation.
Both ATHLETE and HRP-2 grasp the terrain in the same way
a hand grasps an object, placing and removing footfalls rather
than finger contacts. Legged robots have to remain in equi-
librium as they move (only the object must remain in equi-
librium during manipulation), and use fewer contact modes
while walking (no sliding or rolling), but still face similar chal-
lenges (Bicchi and Kumar 2000�Okamura et al. 2000). Manip-
ulation planning, involving the rearrangement of many objects
with a simple manipulator, is another related application. A
manipulator takes a sequence of motions with and without a
grasped object (different states of contact) just like a legged
robot takes a sequence of steps (Alami et al. 1995). In fact, for
a legged robot to navigate among movable obstacles, it may

be necessary to consider both walking and manipulation to-
gether (Stilman and Kuffner 2006).

1.3. Motion Planning for Legged Robots

On rough terrain, the walking motion of legged robots such
as ATHLETE and HRP-2 is governed largely by two interde-
pendent constraints: contact, that is, keep feet, fixed wheels or
other body parts (such as hands or knees) at a carefully chosen
set of footfalls (contacts)� and equilibrium, that is, apply forces
at these footfalls that exactly compensate for gravity without
causing slippage. The range of forces that may be applied at
the footfalls without causing slippage depends on their geom-
etry (e.g. average slope) and their physical properties (e.g. co-
efficient of friction), both of which vary across the terrain. So
every time the robot plans a step, it faces a dilemma: it cannot
know the constraints on its subsequent motion until it chooses
a footfall, a choice that itself depends on the constraints.

To handle this dilemma, we make a key design choice sim-
ilar to that introduced by Bretl (2006) and Hauser et al. (2005)
(Section 2): to choose footfalls before computing motions. We
begin by identifying a number of potentially useful footfalls
across the terrain. Each mapping of a robot’s feet (or other al-
lowed body parts) to a set of footfalls is a stance. Associa-
ted with this stance is a (possibly empty) set of feasible confi-
gurations that satisfy all motion constraints (including contact
and equilibrium). A robot can take a step from one stance to
another if they differ by a single footfall and if they share some
feasible configuration, which we call a transition. Our planner
proceeds in two stages: first, we generate a candidate sequence
of footfalls by finding transitions between stances� then, we
expand this sequence into a feasible, continuous trajectory by
finding paths between subsequent transitions. This two-stage
planning approach is motivated by the fact that a legged ro-
bot’s motion on irregular and steep terrain is most constrained
just as it places a foot at or removes a foot from a footfall
(more generally, when it makes a new contact or breaks one).
At this instant, the robot must be able to reach the footfall (the
contact constraint) but cannot use it to avoid falling (the equi-
librium constraint), since the applied force is zero at the instant
of time when the contact is made or broken. So transitions are
the “bottlenecks” of any motion: if we can find two subsequent
transitions, it is likely we can find a path between them. This
statement has been verified in our experiments.

Like the planners of Bretl (2006) and Hauser et al. (2005),
the planner described in this paper combines graph searching
to generate a sequence of candidate footfalls with a probabilis-
tic roadmap (PRM) approach (see Chapter 7 of Choset et al.
(2005)) to generate continuous motions that reach these foot-
falls. However, we add two key algorithmic tools in this frame-
work (Section 3) to deal specifically with difficult computa-
tional issues raised by legged robots such as ATHLETE and
HRP-2. One is a method of sampling feasible configurations
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and of connecting pairs of configurations with local paths. This
method addresses the challenge that these robots have many
DOFs with terrain contacts that close many kinematic chains.
While the closure constraint reduces the robot’s feasible space
at a given stance to a submanifold of the robot’s configuration
space, other constraints (such as equilibrium) restrict the feasi-
ble space further to a subset of small volume inside that man-
ifold. Hence, sampling feasible configurations and connecting
them with feasible paths is particularly difficult and potentially
time consuming. The other tool is a heuristic to generate foot-
falls and guide our search through the highly combinatorial
collection of stances. This heuristic addresses the challenge
that moving across varied, but not extreme, terrain requires
footfalls to be properly selected, even though the number of
candidate stances is enormous.

1.3.1. Previous Planners for Legged Robots

Motion planning for legged robots requires computing both a
sequence of footfalls and continuous motions that reach these
footfalls. Previous planners differ primarily in which part of
the problem they consider first:

� Motion before footfalls. When it does not matter where
a robot contacts its environment, it makes sense to com-
pute the robot’s (or object’s) overall motion first. For
example, a manipulation planner might generate a tra-
jectory for the grasped object ignoring manipulators,
then compute manipulator trajectories that achieve nec-
essary re-grasps (Koga and Latombe 1994). Similarly,
a humanoid planner might generate a two-dimensional
collision-free path of a bounding cylinder, then follow
this path with a fixed, pre-defined gait (Kuffner 1999�
Pettré et al. 2003). A related strategy is to plan a path
for the robot’s CM, then to compute footfalls and limb
motions that keep the CM stable along this path (Elder-
shaw and Yim 2001). Some planners even avoid reason-
ing about footfalls entirely (Lee et al. 2006). These tech-
niques are fast, but do not extend well to irregular and
steep terrain.

� Footfalls before motion. When the choice of contact lo-
cation is critical, it makes sense to compute a sequence
of footfalls first. This approach is related to the work on
manipulation planning presented by Alami et al. (1995),
which expresses connectivity between different states of
contact as a graph. For “spider-robots” with zero-mass
legs walking on horizontal terrain, the exact structure
of this graph can be computed quickly using analytical
techniques (Boissonnat et al. 2000). For more general
systems, the graph can sometimes be simplified by as-
suming partial gaits, for example restricting the order in
which limbs are moved (Shapiro and Rimon 2003) or re-
stricting footsteps to a discrete set (Kuffner et al. 2003).

However, when motion is distinctly non-gaited (as in
manipulation planning (Nielsen and Kavraki 2000� Sah-
bani et al. 2002), free-climbing (Bretl 2006), or for
ATHLETE and HRP-2 on varied terrain), each step re-
quires the exploration of a distinct configuration space.
This fact motivates the two-stage search strategy we
adopt in Section 2.

1.4. Improving Motion Quality

Without additional considerations for motion quality, the ap-
proach outlined above often generates motion that looks un-
natural and inefficient. The reason is that, while robots such as
ATHLETE and HRP-2 have many DOFs, we do not know in
advance which of these DOFs are actually useful, or how many
contacts may be needed. In some cases, there might exist too
many feasible motions. On easy terrain such as flat ground or
stairs of constant height, the motion of a legged robot is lightly
constrained, so that most of its DOFs are unnecessary, and only
feet need contact the ground. For example, although crawling
would also be feasible for HRP-2 on flat ground, we would
rather see the humanoid walk upright. Alternatively, on hard
terrain such as steep rock or urban rubble, the robot’s motion
is highly constrained. In this case, most of its DOFs are essen-
tial and additional contacts (hands, knees, shoulders) might be
required for balance. On varied terrain between these two ex-
tremes, the number of relevant DOFs and the types of required
contacts may change from step to step. Since our basic planner
always considers all DOFs (in order to find a feasible motion
whenever one exists) it may then generate needless motions of
arms or other DOFs that are not required for balance, or that
may achieve balance in clearly sub-optimal ways. Eliminating
such motions in post-processing is particularly hard. A better
approach is to take motion quality into consideration during
planning.

To solve this problem, we provide our planner with a small
library of high-quality motion primitives, in a similar manner
to Kuffner et al. (2003) and Yamane et al. (2004). These prim-
itives might include a step on flat ground, a step up a staircase,
or a step on sloped terrain with a hand contact on a rock for
balance. Such primitives may be designed by hand, produced
by off-line pre-computation (for instance, using optimization
techniques), or extracted from captured motions of humans
or animals. We record each motion primitive as a nominal
path through the robot’s configuration space. Then, instead of
sampling across all of configuration space to find paths be-
tween stances, our planner samples a growing distribution of
configurations around the nominal path associated with a cho-
sen motion primitive. Our simulation results demonstrate not
only a marked increase in motion quality1 for legged robots

1. Exactly how motion quality should be measured is an open question, and
is beyond the scope of this paper. Here, we de�ne quality as inversely propor-
tional to a linear combination of path length and sum-squared distance from
an upright posture.
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walking on varied terrain, but also a reduction in planning
time. In the absence of a relevant primitive, the planner falls
back on its general sampling method.

1.4.1. Other Ways to Improve Motion Quality

The most common way to improve motion quality is to post-
process feasible motions using methods such as “short-cut”
heuristics (Kavraki et al. 1996� Song et al. 2001) and gradient
descent algorithms (Geraerts and Overmars 2004� Vougioukas
2005).. We also use similar methods in our planner, but, as
mentioned above, for legged robots it is difficult to eliminate
all needless motions in post-processing. For this reason, mo-
tion primitives and other types of maneuvers have been applied
widely to legged robots and other vehicles with complex dy-
namics, as well as to digital animation of virtual actors. Four
general strategies have been used.

� Record and playback. This strategy restricts motion to
a library of maneuvers. Natural-looking humanoid loco-
motion on mostly flat ground can be planned as a se-
quence of pre-computed feasible steps (Kuffner et al.
2003). Robust helicopter flight can be planned as a se-
quence of feedfoward control strategies (learned by ob-
serving skilled human operators) to move between trim
states (Gavrilets et al. 2001� Frazzoli et al. 2002b,a�
Ng et al. 2004). Robotic juggling can be planned as
a sequence of feedback control strategies (Burridge et
al. 1999). The motion of peg-climbing robots can be
planned as a sequence of actions such as “grab the near-
est peg” (Bevly et al. 2000). In these applications, a
reasonably small library of maneuvers is sufficient to
achieve most desired motions. For legged robots on var-
ied terrain, such a library may grow to impractical size.

� Warp, blend or transform. Widely used for digital an-
imation, this strategy also restricts motion to a library
of maneuvers, but allows these maneuvers to be su-
perimposed or transformed to better fit the task at
hand. For example, captured motions of human actors
can be “warped” to allow characters to reach differ-
ent footfalls (Witkin and Popović 1995) or “retargetted”
to control characters of different morphologies (Gle-
icher 1998). The resulting motion is not guaranteed
to satisfy all physical constraints, although techniques
have been proposed that maintain some of these con-
straints (Popović and Witkin 1999� Shin et al. 2001).

� Model reduction. This motion-before-footfalls strategy
first plans an overall motion in a configuration space
of reduced dimension� then, it follows this motion with
a concatenation of primitives. One way to generate
natural-looking humanoid locomotion on flat ground

is to approximate the robot as a cylinder, plan a two-
dimensional collision-free path of this cylinder, and
track this path with a fixed gait (Kuffner 1999� Kovar
et al. 2002� Pettr e et al. 2003� Kron and Shin 2005).
A similar method is used to plan the motion of non-
holonomic wheeled vehicles (Laumond 1987� Laumond
et al. 1994). A related strategy plans the motion of key
points on a robot or digital actor (such as the CM or
related ground reference points (Popovic et al. 2005)),
tracking these points with an operational space con-
troller (Sentis and Khatib 2005). These approaches work
well only when it does not matter much where a robot
or digital actor contacts its environment.

� Bias inverse kinematic solutions. Like model reduction,
this strategy first plans the motion of key points on a
robot or digital actor, such as the location of hands or
feet. However, instead of a fixed controller, a search al-
gorithm is used to compute a pose of the robot or actor
at each instant that tracks these points by selecting an
inverse kinematic solution. One approach is to choose
an inverse kinematic solution according to a probability
density function learned from high-quality example mo-
tions (Grochow et al. 2004� Yamane et al. 2004� Liu et
al. 2005� Meredith and Maddock 2005). The set of ex-
amples gives the resulting pose a particular “style”. We
take a similar approach in this paper, planning steps for
a legged robot by sampling waypoints in a growing dis-
tribution around high-quality nominal paths.

1.5. Limitations

Our work still has many limitations. In particular, we do
not consider dynamic equilibrium, closed-loop control, visual
feedback, robustness to modeling errors, error recovery or de-
formable terrain. We briefly address some of these limitations
in the conclusion. For example, the use of motion primitives
to generate more natural motions could be extended to han-
dle dynamic constraints. Some robustness to modeling errors
can be achieved by requiring that the robot’s CM stays well
within the support polygon. Deformable terrain would require
a more general contact model than pure frictional contact. De-
spite such current limitations, we believe that the planning
methods presented in this paper can be useful in practice.

1.6. Organization of the Paper

Section 2 presents our footfalls-before-motion planning ap-
proach. Section 3 describes more specific algorithmic tools
that are designed to deal with the difficult computational issues
raised by robots such as ATHLETE and HRP-2. Section 4 dis-
cusses the generation, use and selection of motion primitives
to help plan higher-quality motion. Section 5 presents simula-
tion results for both ATHLETE and HRP-2, demonstrating that
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Fig. 4. Overall structure of the motion planner.

our planner enables these robots to traverse terrain where fixed
gaits would fail. These results also show that the use of motion
primitives makes it possible to plan motions of significantly
higher quality, particularly when these primitives are also used
to select contacts with the terrain. All computation times re-
ported in this paper were obtained by running our software on
a 1.8 GHz PC.

2. Design of the Motion Planner

Our planner extends a similar approach for humanoid ro-
bots (Hauser et al. 2005), which was based on earlier work for
a free-climbing robot (Bretl 2006). Figure 4 shows the overall
structure of this planner. Here, we summarize our basic ap-
proach.
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2.1. Motion constraints

A configuration of a robot, here either ATHLETE or HRP-
2, is a parameterization q of the robot’s placement in three-
dimensional space. For ATHLETE, q consists of six para-
meters defining the position and orientation of the hexagonal
chassis and a list of 36 joint angles (since each leg has six
actuated, revolute joints). For HRP-2, q consists of six para-
meters defining the position and orientation of the torso and a
list of 30 joint angles. The set of all such q is the configuration
space, denoted �, of dimensionality 42 for ATHLETE and 36
for HRP-2.

We consider terrain that may include an arbitrary mixture
of flat, sloped or irregular ground. We assume that this terrain
and all robot links are perfectly rigid. We also assume that we
are given a set of robot links in advance that are allowed to
touch the terrain. For ATHLETE, this set includes only its six
wheels, to which brakes are applied (to prevent rolling) while
the robot is walking. For HRP-2, this set may include the hands
and the knees, in addition to the feet. We call the placement of
a link on the terrain a contact, and fix the position and orien-
tation of the link while the contact is maintained. We call a set
of simultaneous contacts a stance, denoted by � . Consider a
stance � with N � 1 contacts. The feasible space �� is the set
of all feasible configurations of the robot at � . To be in �� , a
configuration q must satisfy several constraints.

� Contact. The N contacts form a linkage with multiple
closed-loop chains. So, q must satisfy inverse kinematic
equations. Let �� �� be the set of all configurations
q that satisfy these equations. This set �� is a sub-
manifold of� of dimensionality 42�6N for ATHLETE
and 36� 6N for HRP-2, which we call the stance man-
ifold. This manifold is empty if it is impossible for the
robot to achieve the contacts specified by � , for example
if two contact points are farther apart than the maximum
span of the robot.

� Static equilibrium. To remain balanced, both ATHLETE
and HRP-2 must apply forces at contacts in � that com-
pensate for gravity without slipping. For valid forces to
exist, the robot’s CM must lie above its support poly-
gon. However, on irregular and sloped terrain, the sup-
port polygon does not always correspond to the base of
the robot’s feet. For example, both ATHLETE and HRP-
2 will slip off a flat and featureless slope that is too steep,
regardless of their CM position. To compute the support
polygon, we model each contact as a frictional point in
the case of ATHLETE and a set of frictional points (the
vertices of the convex hull of the contact area) in the
case of HRP-2. Let r1� � � � � rn � �

3 denote the posi-
tion of all points modeling the N contacts. Similarly,
let �i � �3, �i � 0, and fi � �3 for i � 1� � � � � n,
be the normal vector, the static coefficient of friction,
and the reaction force acting on the robot at each point,

respectively. We decompose each force fi into a compo-
nent �T

i fi�i normal to the terrain surface and a compo-
nent �I � �i�

T
i � fi tangential to the surface. Let c � �3

be the position of the robot’s CM (which varies with
the configuration q). Let m be the robot’s mass and
g � �3 be the acceleration due to gravity. All vectors
are defined with respect to a global coordinate system
with axes e1� e2� e3, where g ��	g	e3. Then the robot
is in static equilibrium if:

n�
i�1

fi 
 mg � 0 (force balance), (1)

n�
i�1

ri � fi 
 c �mg � 0 (torque balance), (2)

���I � �i�
T
i � fi

��
2 � �i�

T
i fi

for all i � 1� � � � � n (friction cones). (3)

These constraints are jointly convex in f1� � � � � fn and c.
In particular, Equations (1) and (2) are linear and Equa-
tion (3) is a second-order cone constraint. The set of
jointly feasible contact forces and CM positions is a
high-dimensional convex set (Bretl et al. 2003� Bretl
2006� Bretl and Lall 2006, 2008). Since

c �mg � m 	g	

�
�����

�c  e2

c  e1

0

�
����� �

Equations (1) and (2) do not depend on c  e3 (the CM
coordinate parallel to gravity), so the support polygon
is the projection of this convex set onto the coordi-
nates e1� e2. One way to compute this projection and to
test the membership of c is described by Bretl and Lall
(2008) and Bretl and Lall (2006).

� Joint torque limits. The above equilibrium test assumes
the robot is a rigid body, “frozen” at configuration q. In
reality, to stay in this configuration each joint must exert
a torque, which in turn must not exceed a given bound.
Let � be the vector of all joint torques exerted by the
robot. These torques must satisfy

� � G�q��
n�

i�1

Ji �q�
T fi � (4)

where G�q� is the generalized gravity vector and Ji �q�
is the Jacobian of the point on the robot touching ri . Let
		� be a scaled L� norm where 	�	� 	 1 implies that
each joint torque is within bounds. We check joint torque
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limits by solving a second-order cone program (Boyd
and Vandenberghe 2004) to compute contact forces that
satisfy Equation (1)–(4) with minimum 	�	� and verify
	�	� 	 1.

� Collision. In addition to satisfying joint angle limits, the
robot must avoid collision with the environment (ex-
cept at contact points) and with itself. We use tech-
niques based on pre-computed bounding volume hier-
archies to perform collision checking, in a similar way
to Gottschalk et al. (1996) and Schwarzer et al. (2002).

The static equilibrium and torque limit conditions, as we
state them above, are only necessary for stability. Additional
assumptions, for example, resolving contact force indetermi-
nacy, are required for these conditions to be sufficient (Pang
and Trinkle 2000� Greenfield et al. 2005� Rimon et al. 2006).

2.2. Two-stage Search

Both ATHLETE and HRP-2 move from one place to another
by taking a sequence of steps. Each step is a continuous mo-
tion at a fixed stance that ends by making or breaking a single
contact to reach a new stance. Suppose that the robot begins
a step at configuration q ��� at stance � . Let � � be a stance
adjacent to � , that is, that either adds one contact to � or re-
moves one contact from � . A single step from � to � � is a
feasible path in �� from the initial configuration q to some
final configuration q � ������ � , which we call a transition,
that is feasible at both � and � �.

As an example, consider HRP-2 in Figure 7(a). The
stance � contains one contact, corresponding to the fixed
placement of the robot’s right foot. The adjacent stance � � con-
tains two contacts, the second corresponding to the fixed place-
ment of its left foot. The initial configuration q � �� is shown
in the first frame of Figure 7(a)� the transition q � � �� ��� � is
shown in the last frame. At the transition, the robot can reach
both contacts in � �, but can support itself only with forces ap-
plied at the contact in � . The step is the path between q and q �
shown in the intermediate frames of Figure 7(a).

The planner samples contact locations on the terrain either
at random or using a distribution taking into account the ter-
rain’s local geometry, in a similar manner to Chestnutt et al.
(2003). These contact locations, along with the given set of
robot links that are allowed to touch the terrain, then deter-
mine the set of all possible stances (usually a huge set) that
may be considered by the planner. We say that two adjacent
stances in this set are connected if the robot can take a step
from one to the other. We encode necessary conditions for
connectivity as a stance graph. Each node of this graph is
a stance. Two nodes � and � � are connected by an edge if
there is a transition between �� and �� � . The existence of this
transition is a necessary condition for the robot to take a step
from some configuration at one stance to some configuration

at an adjacent stance. Note, however, that for any two con-
nected stances � and � �, both �� and �� � �� � may con-
tain several components. So, we encode both necessary and
sufficient conditions for connectivity as another graph, the
transition graph. Each node of this graph is a transition. Two
nodes q ������ � and q � ������ �� are connected by an
edge if there is a continuous path between them in �� .

Neither the stance graph nor the transition graph are con-
structed in their entirety, both because these graphs are very
large and because a search algorithm is required to verify
the existence of graph edges. Moreover, verifying the non-
existence of graph edges is prohibitively difficult. For this rea-
son, our planner interweaves exploration of the stance graph
and the transition graph, based on the method of Bretl (2006).
The algorithm EXPLORE-STANCEGRAPH searches the stance
graph (Figure 5). It maintains a priority queue Q of nodes to
explore. When it unstacks � final, it has found a candidate se-
quence of adjacent stances from � initial to � final. The algorithm
EXPLORE-TRANSITIONGRAPH then verifies that this candi-
date sequence corresponds to a feasible motion by search-
ing a subset of the transition graph (Figure 5). It explores
a transition q ������ � only if �� � � �� is an edge along
the candidate sequence, and a path between q� q � ��� only
if � is a node along this sequence. We say that EXPLORE-
TRANSITIONGRAPH has reached a stance � i if some transi-
tion q ��� i�1��� i is connected to qinitial in the transition
graph. The algorithm returns the index i of the farthest stance
reached along the candidate sequence. If this is not � final, then
the edge �� i � � i
1� is removed from the stance graph, and
EXPLORE-STANCEGRAPH resumes exploration.

The important effect of this two-stage search strategy is to
postpone the generation of one-step paths (a relatively costly
computation) until after generating transitions. It works well
because, as we mentioned in Section 1, both ATHLETE’s
and HRP-2’s motion on irregular and steep terrain is most con-
strained just as either robot places or removes a foot. In our ex-
periments we have observed that if we can find q ������ �
and q � ������ �� , then a path between q and q � likely ex-
ists in �� . For example, in Section 5.1 we present experiments
with ATHLETE on a variety of terrain. In these experiments,
there was a 60–75% chance of finding a feasible path between
randomly sampled q ������ � and q � ������ �� . More-
over, even if we could find no feasible path from q to q �,
nearly 100% of the time we could find a feasible path from q to
a different configuration in ����� �� . So after sampling even
a small number of transitions, we can be reasonably sure to
also find a one-step path.

Two key tools are embedded in this framework: the subrou-
tines FIND-TRANSITION and FIND-PATH, and a heuristic for
ordering Q. We present these tools in the following section.
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Fig. 5. Algorithms to explore the stance graph and the transition graph.

3. Tools to Support the Motion Planner

3.1. Generating Transitions

Both EXPLORE-STANCEGRAPH and EXPLORE-TRANSI-
TIONGRAPH require the subroutine FIND-TRANSITION to
generate transitions q ������ � between pairs of stances �
and � �. To implement FIND-TRANSITION, we use a sample-
based approach. The basic idea is to sample configurations
randomly in the robot’s configuration space� and reject those
which are not in ����� � . However, because of the contact
constraint (Section 2.1),�� is a sub-manifold of�, and in par-
ticular has lower dimension than �. As a result, �� has zero
measure in�, and so random sampling in� would never gen-
erate a feasible transition. So, like Cortés et al. (2002), Wang
and Chen (1991) and Yakey et al. (2001), we spend more time

trying to generate configurations that satisfy the contact con-
straint at � (or at � � if � � � �) before rejecting those that do
not satisfy other constraints. Like Hauser et al. (2005), we do
this in two steps.

1. Create a candidate configuration that is close to �� .
This step is tailored to the particular legged robot.

ATHLETE: Each contact in the stance � corresponds
to the placement of a foot at a footfall in the terrain.
First, we create a nominal position and orientation of
the chassis: (i) we fit a plane to the footfalls in � in
a least-squares sense� (ii) we place the chassis in this
plane, minimizing the distance from each hip to its cor-
responding footfall� and (iii) we translate the chassis a
nominal distance perpendicular to the plane-fit and away
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from the terrain. Then, we sample a position and orien-
tation of the chassis in a Gaussian distribution about this
nominal placement. Finally, we compute the set of joint
angles that cause each foot to either reach or come clos-
est to reaching its corresponding footfall. Note that here
a footfall fixes the intersection of the ankle pitch and
ankle roll joints relative to the chassis (Figure 1). The
hip yaw, hip pitch and knee pitch joints determine this
position. There are up to four inverse kinematic solu-
tions for these joints or, if no solutions exist, there are
two configurations that are closest (straight knee and
completely bent knee). The knee roll, ankle roll and
ankle pitch determine the orientation of the foot, for
which there are two inverse kinematic solutions. We se-
lect a configuration that satisfies joint-limit constraints�
if none exist, we reject the sample and repeat.

HRP-2: Each contact in the stance corresponds to the
placement of a robot link on the terrain. We select one
of these links as a root and fix its location. Then, start-
ing from the root link, we incrementally sample joint
angles (satisfying joint angle limits) along each closed-
loop kinematic chain using a bounding-volume tech-
nique similar to Cortés et al. (2002). Finally, we use
cyclic coordinate descent (Wang and Chen 1991) to ad-
just these joint angles so that every contact in the stance
is approximately achieved.

2. Repair the candidate configuration using numerical in-
verse kinematics. We move the candidate configuration
to a point in �� using an iterative Newton–Raphson
method. For each contact i � 1� � � � � N in � , the error in
position and orientation of the corresponding robot link
is a differentiable function 
i �q� of the configuration q.
Let

E�q� �

�
�����


1�q�

���


N �q�

�
����� �

The contact constraint is the equality E�q� � 0. At each
iteration k of the Newton–Raphson method, we trans-
form the current configuration by taking the step

qk
1 � qk � �k�E�qk�
�† E�qk��

where q1 is the initial candidate configuration generated
at step 1,�E�qk�

�† is the pseudo-inverse of the gradient
of the error function, and �k is the step size (computed
using backtracking line search). The algorithm termi-
nates with success if at some iteration 	E�qk�	 	 � for
some tolerance �, or with failure if a maximum number
of iterations is exceeded.

The first step rarely generates configurations in �� , but
quickly provides configurations that are close to �� . On the
other hand, the primary cost of the second step is in comput-
ing �g�qk�

�† at every iteration, but few iterations are nec-
essary when candidate configurations are sufficiently close
to �� . So, it is the combination of these two steps that makes
our sampler fast. For ATHLETE, the experiments correspond-
ing to Figure 11 show that the repair step increases the frac-
tion of feasible configurations from 1.9% to 18.4% and re-
duces the average time to generate each feasible sample from
0.64 to 0.24 s. For HRP-2, the experiments corresponding to
Figure 13 show that the repair step increases the fraction of
feasible configurations from 0.4% to 31.9% and reduces the
sampling time from 0.74 to 0.06 s.

The above method quickly samples configurations in �� .
However, the other constraints (equilibrium, torque, collision)
restrict the feasible space����� � to a subset of�� . As the rel-
ative volume of this subset decreases, the rejection rate of the
method increases. This problem arises in particular for HRP-
2, which in general has a smaller support polygon and tighter
joint limits than ATHLETE. To reduce the rejection rate, we
write the equilibrium and joint-limit constraints as differen-
tiable inequalities, and enforce them together with the contact
equality when we repair a candidate configuration. We include
these inequalities by combining the Newton–Raphson proce-
dure with an active-set method in a similar manner to Byrd et
al. (2002).

Note that EXPLORE-TRANSITIONGRAPH additionally re-
quires that we sample a single transition in each connected
component of ����� � . Our approach is not guaranteed to do
this, but the probability that it samples at least one in each
component increases with the number of samples. If it eventu-
ally misses a component, this component is likely to be small,
hence sensitive to modeling uncertainty and not useful in prac-
tice.

3.2. Generating Paths between Transitions

EXPLORE-TRANSITIONGRAPH requires FIND-PATH to gen-
erate paths in �� between pairs of transitions q ������ �
and q � ������ �� . We use the PRM planner called
SBL (Sánchez and Latombe 2002), which grows two trees of
milestones rooted at q and q �. To sample configurations in �� ,
we face a similar challenge to that discussed in the previous
section (that a random configuration has zero probability of
being in �� ), and so we use a similar approach. However, in
this case, to grow the two trees of milestones, SBL only re-
quires sampling each new configuration in a neighborhood of
an existing milestone. Close to this milestone (call it q0), the
shape of the manifold Q� is approximated well by the hyper-
plane 	

p � ��E�q0�
T p � �E�q0�

T q0


�
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Fig. 6. Algorithm to connect close configurations with a local path.

So, before applying the iterative method to repair the sampled
configuration, we first project it onto this hyperplane (in a sim-
ilar way to Yakey et al. (2001)).

To connect milestones with local paths, we face again a
similar challenge, since the straight-line path between any two
configurations q and q � will not, in general, lie in �� . We de-
form this straight-line path into�� using the bisection method
FREE-PATH (Figure 6). At each iteration, FREE-PATH first ap-
plies Newton–Raphson (see Section 3.1) to the midpoint of q
and q � to generate qmid � �� , then it checks that qmid � �� . If
both steps succeed, the algorithm continues to recurse until a
desired resolution has been reached� otherwise, the algorithm
returns failure. The advantage of this approach is that it does
not require a direct local parameterization of �� , as it may be
difficult to compute such a parameterization that covers both q
and q �.

3.3. Ordering the Graph Search

Our two-stage search strategy can be greatly improved by or-
dering the stances in the priority queue Q used by EXPLORE-
STANCEGRAPH in increasing order of a heuristic cost func-
tion g�� �
 h�� �.

The term g�� � assigns a cost to the path from � initial

to � in the stance graph. First we associate a cost with each
edge �� � � �� in the stance graph. Each edge cost is initialized
to 1, but may be modified later as indicated below. Then, we
associate a cost with each path in the stance graph as the sum
of its edge costs. Finally, we define g�� � as the minimum path
cost required to reach � from � initial in the stance graph.

The term h�� � assigns a cost to the stance � itself. We
define h�� � as a weighted sum of several criteria:

� Planning time. We increase the cost of � proportional
to the amount of time spent trying to sample a tran-

sition q ��� ���� to reach it (Nielsen and Kavraki
2000).

� Distance to goal. We increase the cost of � proportional
to the distance between the centroid of its contacts and
those of the goal stance � final.

� Footfall distribution. We increase the cost of � propor-
tional to the difference (in a least-squares sense) be-
tween its contacts and those of a nominal stance on flat
ground (for example, with feet directly under each hip).

� Equilibrium criteria. We increase the cost of � inversely
proportional to the area of its support polygon.

This heuristic reduces planning time and improves the re-
sulting motion. It also allows us to relax an implicit assump-
tion, that FIND-TRANSITION and FIND-PATH always return
“failure” correctly. As we implement these subroutines using
a probabilistic sampling approach, they are unable to distin-
guish between impossible and difficult queries. So, on fail-
ure of FIND-TRANSITION in EXPLORE-STANCEGRAPH, we
still add � to the stance graph but give � a high cost. Like-
wise, rather than delete �� � � �� on failure of FIND-PATH, we
increase the step cost of (�� � ��.

4. Improving Motion Quality

The motions planned using the methods described so far are
feasible (given an accurate terrain model) but not necessar-
ily of high quality. In particular, on easy terrain the motion
of ATHLETE and HRP-2 is lightly constrained. Then our plan-
ner may generate paths that contain erratic, unnecessary move-
ments of the legs, arms and torso. To improve the result, we
apply a post-processing method of smoothing similar to those
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Fig. 7. Two primitives on flat ground to (a) place a foot and (b) remove a foot. The support polygon, here just the convex hull of
supporting feet, is shaded blue. See also Extensions 1 and 2.

of Geraerts and Overmars (2004) and Vougioukas (2005), who
used gradient descent to achieve criteria such as the minimum
path length and maximum clearance (or safety margin). How-
ever, such a method (even a more computationally intensive
one that optimizes dynamic criteria, such as energy spent) of-
ten fails to eliminate all needless motion, so does not transform
any inefficient motion into an efficient motion.

Moreover, because we sample each contact location on the
terrain (see Section 2.2), we might end up trying difficult steps
when simpler steps (with slightly different contact locations)
would also have led to the goal. For example, the robot might
reach a stance � associated with a feasible space�� containing
a narrow passage, forcing the planner to compute a contrived
motion, while a small perturbation of the contact locations at �
may have eliminated this passage (Hsu et al. 2005). To address
the motion-quality issue, we provide our planner with a small
library of motion primitives, each being a single step of very
high quality. We do not restrict motion to these primitives, for
example by sequencing, superimposing or transforming them
(Section 1.4). Instead, we apply these primitives to bias the
sampling strategy used to find transitions, to find paths, and

to find contact locations on the terrain. So, motion primitives
do not limit the region of configuration space explored by our
planner� rather, they influence which regions of configuration
space are explored first. Below we describe (1) how we gener-
ate these primitives, (2) how we use a given primitive to plan a
better one-step motion and (3) how we decide which primitive
to use when planning this motion.

4.1. Generating Motion Primitives

Given two adjacent stances � and � � and an initial configu-
ration q � �� , our planner uses the methods described in
Sections 2 and 3 to generate a large number of paths to final
configurations randomly sampled in �� � �� � . Then, it runs
a non-linear optimization package (Lawrence et al. 1997) to
optimize each path with respect to a given objective func-
tion (Harada et al. 2006) that combines path length, torque, en-
ergy and the amount of deviation from an upright posture. This
entire process is an off-line pre-computation� several hours
were required to generate the two example primitives in Fig-
ure 7.
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In our current implementation, the user selects the triplets
�� � � �� q� given as input to the planner. These triplets should
correspond to steps that are similar those likely to be needed
in the type of terrain considered. The user must also choose
which optimized motions generated by the planner are retained
in the library of primitives, since objective functions may not
be guaranteed to correspond to our esthetic notion of what is
“natural” or “good-looking”.

The generation of motion primitives has not been the main
focus of our work so far, so many improvements are possible.
For example, better results might be obtained with the method
of optimization proposed by (Bobrow et al. 2001), which uses
a B-spline representation of the trajectory and a different per-
formance metric. Likewise, we might use a learned classifier
to decide, without supervision, whether candidate primitives
look natural, in a similar manner to Ren et al. (2005). Fi-
nally, we might automate the selection of triplets �� � � �� q� by
learning a statistical model of importance (similar to location-
based activity recognition (Liao et al. 2005)) or applicability
after perturbation (similar to PRM planning with model uncer-
tainty (Missiuro and Roy 2006)).

We record each primitive as a nominal path

u : t � [0� 1] � u�t� � �
in configuration space. Each recorded primitive either adds a
contact (if � � � �), or breaks a contact (if � � � �). We denote
the initial and final stances for each primitive u by � u and � �u ,
respectively.

4.2. Using Primitives for Planning

We use motion primitives to help our planner generate each
step. We do this at three levels:

1. finding a path between a given configuration and a given
transition in an adjacent stance�

2. finding a transition between two given stances (here, no
transition is given)�

3. finding a new contact given a stance (in order to define
the step’s final stance).

In each case, first we transform the primitive to better match
the step we are trying to plan, then we use the transformed
primitive to bias the sampling strategy used by our planner.

4.2.1. Finding Paths

Consider the robot at an initial configuration q initial��� at
some stance � . Assume that we are given an adjacent stance � �
and a transition qfinal������ � . Also assume that we are
given a primitive u ��. We want to use u to guide the search

of the PRM planner for a path from qinitial to qfinal in �� .
We still use SBL (see Section 3.2) to grow trees from root
configurations, but rather than root these trees only at qinitial

and qfinal, we now root them at additional configurations (in a
similar manner to Akinc et al. (2003)) sampled according to
the primitive u.

(a) Transforming the Primitive to Match qinitial and qfinal.
Although we expect u to be somewhat similar to the step we
are trying to plan, it will not be identical in general. Therefore,
we first transform u so that it starts at qinitial and ends at qfinal.
We use an affine transformation

�u�t� � A �u�t�� u�0��
 qinitial (5)

that maps the straight-line segment between u�0� and u�1� to
the segment between qinitial and qfinal. Hence,

�u�0� � A �u�0�� u�0��
 qinitial

� 0
 qinitial

� qinitial

�u�1� � A �u�1�� u�0��
 qinitial

� �qfinal � qinitial �
 qinitial

� qfinal�

We select A closest to the identity matrix, by minimizing

min
A

�
i� j

�Ai j � i� j �
2

such that A �u�1�� u�0�� � qfinal � qinitial�

where i j � 1 if i � j and zero otherwise. We compute A in
closed form as

A � I 
 ��qfinal � qinitial �� �u�1�� u�0��� �u�1�� u�0��T

	u�1�� u�0�	2
2

�

We depict this transformation in Figure 8(a). First, u is trans-
lated to start at qinitial. Then, the farther we move along u (the
more we increase t), the closer �u is pushed toward the segment
from qinitial to qfinal.

(b) Sampling Root Milestones. Let q1� � � � � qs be
configurations evenly distributed along �u from q1 � qinitial

to qs � qfinal (Figure 8(b)). For each i � 1� � � � � s, we test
if qi ��� . If so, the PRM planner adds qi as a root mile-
stone in the roadmap. If not, it samples other configurations
in a growing neighborhood of qi until it finds some feasi-
ble q �i ��� , which is added as a root milestone instead of qi .
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Fig. 8. Using a primitive to guide path planning. (a) Transforming a motion primitive to start at qinitial and end at qfinal. (b) Sampling
root milestones in �� near equally spaced waypoints along �u. (c) Growing trees to connect neighboring roots. (d) The resulting
path, which if possible is close to �u (dotted).

(c) Connecting Neighboring Roots with Sampled Trees.
For i � 1� � � � � s � 1, we check whether the root milestone qi

can be connected to its neighbor qi
1 with a feasible local path
(in a similar manner to Hauser et al. (2005)). If not, we add the
pair of roots �qi � qi
1� to a set�. Then, we grow trees of mile-
stones between every pair in �. For example, in Figure 8(c)
we add �q2� q3� and �q4� q5� to � and grow trees to connect
both q2 with q3 and q4 with q5. We process all trees concur-
rently. At every iteration, for each pair �qi � qi
1� � �, we first
add � milestones to the trees at both qi and qi
1 (in our ex-
periments, we set � � 5). Then, we find the configurations q
connected to qi and q � connected to qi
1 that are closest. If q

and q � can be connected by a local path, we remove �qi � qi
1�
from�. When we connect all neighboring roots, we return the
resulting path� if this does not happen after a fixed number of
iterations, we return failure. Just like our original implemen-
tation, this approach will find a path between qinitial and qfinal

whenever one exists (given enough time). However, since we
seed our roadmap with milestones that are close to u, we ex-
pect the resulting motion to be similar (and of similar qual-
ity) to this primitive whenever possible (Figure 8(d)), deviating
significantly from it only when necessary.
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4.2.2. Finding Transitions

Again consider the robot at configuration q initial��� at a
stance � . But now, assume that we are only given stance � �.
We want to use a primitive u to guide the search for a transi-
tion q final������ � before we plan a path to reach it (as de-
scribed in Section 4.2.1). We expect a well-chosen transition
to further improve the quality of this path.

(a) Transforming the Primitive to Match � and � �. Since
we do not know qfinal, we can not use the same transforma-
tion defined by Equation (5) that we used in Section 4.2.1(a).
Instead, we use a rigid-body transformation of the form

�u�t� � Au�t�
 b (6)

that maps the stances � u and � �u associated with the primitive u
as closely as possible to the stances � and � �.

Recall from Section 2.1 that a stance consists of several
contacts, each placing a link of the robot on the terrain, and
that we model a contact made by a robot link as a finite set of
frictional points. Let ri � �3 for i � 1� � � � �m be the set of all
points defining the contacts in both � u and � �u , and let si � �3

for i � 1� � � � �m be the set of all points defining the contacts in
both � and � �. (We assume that u has been chosen so that both
sets have the same number of points.) We specify the positions
of the contact points relative to the robot, and we choose the
rotation matrix A and translation b in Equation (6) that mini-
mize

min
A�b

�
i

	Ari 
 b � si	2
2 �

We can compute A and b in closed form (Arun et al. 1987), but
we only consider rotations A about the gravity vector to avoid
tilting the robot into an orientation that would violate the static
equilibrium constraint.

(b) Sampling a Transition. We use the same two-step
method as in Section 3.1. However, rather than sampling can-
didate configurations close to �� at random, we sample them
in a growing neighborhood of �u�1�.

4.2.3. Finding Contacts

Once more, consider the robot at configuration q initial��� at
stance � , but now assume that we are given neither an adjacent
stance � � nor a transition, only a primitive u. If u removes a
robot link from the terrain, then we immediately generate a
final stance � � by removing the corresponding contact from � ,
and we apply the above techniques to compute a transition and
a path to reach it. However, if u creates a new contact between
a link and the terrain, we may use it to guide our search for a
new contact during the construction of the stance graph.

(a) Transforming the Primitive to Match � . We use the
same transformation defined by Equation (6) to construct �u
as for finding transitions, but here we compute A and b to
map only � u to � , since we do not know � �. We then use
this transformation to adjust the placement of the new con-
tact given by u. Let ri � �3 for i � 1� � � � �m be the set of
points defining this contact. Then the transformed contact is
given by �ri � Ari 
 b for i � 1� � � � �m.

(b) Sampling a Contact. We define a sphere of radius ,
centered at �1�m�

�
i �ri . We increase  until the intersection

of this sphere with the terrain is non-empty (initially, we set 
to be approximately the size of either ATHLETE’s or HRP-
2’s foot). We randomly sample a placement of the points �ri on
the surface of the terrain inside the sphere, by first sampling a
position of their centroid s � �3 on the surface, then sampling
a rotation of �ri about the surface normal at s. We check that
the contact defined by this placement has similar properties
(normal vector, friction coefficient) to the contact defined by u.
If so, we add it to � to form � �. If not, we reject it and sample
another placement.

4.2.4. Deciding Which Primitive to Use

It only remains to decide which primitive u should be used,
if any, given an initial stance � and configuration qinitial. We
have experimented with a variety of heuristics. For example,
we may pick the primitive that most closely matches � u with �
(in other words, that minimizes the error in a transformation of
the form (6)). Likewise, we may pick the primitive that most
closely matches � �u with the actual terrain. If no primitives
match well, we use the basic method from Section 3 instead.
However, the best approach is still not clear, and this issue re-
mains an important area for future work.

5. Results

5.1. Application to ATHLETE

We tested the planner in simulation on several example ter-
rains. Our main goal was to demonstrate that the planner en-
ables ATHLETE to traverse terrain where fixed gaits would
fail. In particular, we tested the planner on terrains generated
to simulate a range of Lunar surfaces. Using a fractal genera-
tion method, we created height maps of the form z � f �x� y�
as triangle meshes, where each triangle is about half the size of
ATHLETE’s wheels. All contacts were modeled with the same
coefficient of friction. Figure 9(a) shows an alternating-tripod
gait applied to smooth, undulating terrain. The gait can tra-
verse the terrain freely. However, on irregular and steep ground
(Figure 9(b)), the gait does not work at all: it results in ATH-
LETE losing balance or exceeding torque limits at several lo-
cations. We applied our planner to the same terrains, setting
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Fig. 9. Walking with an alternating tripod gait is (a) feasible on smooth terrain but (b) infeasible on uneven terrain due to
violations of equilibrium and torque constraints. Extensions 3 and 4 show exactly when these constraints are violated.

Fig. 10. Walking on smooth, undulating terrain with no fixed gait (see Extension 5).

the initial and final stances at a distance of about twice the di-
ameter of ATHLETE’s chassis, and sampling 200 contacts in
the terrain to use for creating stances. Figure 10 shows motion
on smooth ground, computed in 14 min and consisting of 66
steps. Figure 11 shows a feasible motion on irregular and steep
ground, computed in 26 min and consisting of 84 steps.

We also performed more quantitative tests on simpler ter-
rains, namely on a series of stair steps. The results are summa-
rized in Table 1. The stairs range from 0.2 to 0.5 times the di-
ameter of ATHLETE’s chassis, and require moving about two
body lengths. Alternating tripod, four-legged and six-legged
gaits were able to traverse the lowest stair (after some recover-
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Fig. 11. Walking on steep, uneven terrain with no fixed gait (see Extension 6).

Table 1. Stair steps planned with various methods. Dashes
indicates failure. Planner times are averaged over four
runs.

Gait

Height Tripod Four Six Planner Manual

0.2 � � � 8 min 5 min 40 s

0.3 — — — 8 min 30 s 14 min

0.4 — — — 16 min 15 s —

0.5 — — — 15 min 15 s —

able slippage), but failed on all others. The planner, however,
was able to reliably plan motions over all stairs, after sam-
pling 200 footfalls at random in each terrain and relying on
the search heuristic (Section 3.3) to identify which stances are
useful. We compared the planner with footsteps chosen man-
ually. A human operator used a point-and-click interface to
place and break contacts. Motions to achieve the commanded
contact changes were planned automatically with the one-step
PRM planner. Manual operation was straightforward for the
0.2-unit stair, but the 0.3-unit stair required a large amount of
trial-and-error and backtracking. An attempt to plan the 0.4-
unit stair was stopped in frustration after about 30 min.

In another series of experiments, we demonstrated that the
planner is flexible enough to handle different robot morpholo-
gies. Figure 12 shows motion to descend irregular and steep
terrain at an average angle of about 60�. In this example, ATH-
LETE is rappelling, using a tether (anchored at the top of the
cliff) to help maintain equilibrium. We included the tether with

no modification to our planner, treating it as an additional leg
with a different kinematic structure. The resulting motion con-
sisted of 32 steps. Total computation time was 16 min.

All of these examples were generated without the use of
motion primitives. The use of primitives becomes more im-
portant with HRP-2, as described in the following section.

5.2. Application to HRP-2

With HRP-2, the use of motion primitives was critical to plan
motion paths of reasonable quality. We first demonstrate this
point in detail on a stair-climbing example. Then we show sev-
eral other experimental examples.

(a) An Example of Climbing a Single Stair.

In this example, we show that using a simple primitive can
significantly help to improve motion quality, and that using
the primitive to also sample transitions and contacts succes-
sively adds to the quality of the result. Figure 13 shows a
two-step motion of HRP-2 to climb a single stair of height
0.3 m (just below the knee). This motion was planned without
primitives (i.e. only with the methods described in Sections 2
and 3). As the motion is lightly constrained, the planner cre-
ates poorly chosen and superfluous movements (even after we
apply a post-processing method of smoothing). In particular,
the robot’s arm and leg motions are erratic, and its right foot is
placed too far on the stair. To improve this motion, we applied
the two primitives shown in Figure 7 (steps on flat ground).
First, we used these primitives only to help the PRM planner
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Fig. 12. Rappelling down an irregular 60� slope with no fixed gait (see Extension 7).

generate each one-step path, as described in Section 4.2.1. Fig-
ure 14 shows the resulting motion. Some erratic leg motions
are eliminated, such as the backward movement of the leg in
the second frame. The erratic arm motions remain, however, in
particular because the transition in the fourth frame is the same
(still randomly sampled). Figure 15 shows the result of using
the primitives to adjust this transition as well as to plan paths,
as described in Section 4.2.2, eliminating most of the erratic
arm motions. However, the extreme lean in the fifth frame re-
mains, due to the fact that the right foot is placed too far on
the stair. Finally, Figure 16 shows the result of using the prim-
itives to select contacts, sample transitions and plan paths, as
described in Section 4.2.2. The chosen contact resulted in an
easier step, eliminating the lean in the fifth frame. The foot
is placed halfway off the step, something that people often do
but that is potentially less stable. Here, we consider only static
equilibrium (Section 2.1), a consideration of stability is be-
yond the scope of this paper.

(b) Motion quality and planning times for stairs of different
heights.

We have observed that high-quality motion can be generated
even when we use a primitive to plan a step that is significantly
different. For example, we applied the same two primitives

shown in Figure 7 to climb stairs of height 0.2, 0.3 and 0.4 m.
Figure 17 shows the results. The quantitative results in the ta-
ble were averaged over five runs. Quality is measured by an
objective function that penalizes both path length and devi-
ations from an upright posture (lower values indicate higher
quality). For comparison, we report the minimum objective
value achieved after a lengthy off-line optimization. These re-
sults demonstrate that using primitives both significantly im-
proves motion quality and provides some reduction in planning
time. Note also that both quality and time degrade gracefully
as the stair gets higher, hence the steps deviate further from the
primitives.

(c) Other examples.

We have tested our planner with HRP-2 on many other exam-
ples. Figure 18 shows a motion of HRP-2 on slightly uneven
terrain where the highest and lowest points differ by 0.5 m� the
motion was planned using the primitives given in Figure 7. In
Figure 19 HRP-2 climbs a ladder with rungs that have non-
uniform spacing and deviate from the horizontal by up to 15�.
The primitives used for planning this motion were generated
on a ladder with horizontal, uniformly spaced rungs. In Fig-
ure 20 HRP-2 walks sideways on a sloped terrain among boul-
ders, using the hands to maintain equilibrium. Here, the prim-
itives used by the planner were generated to step sideways on
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Fig. 13. Stair step planned entirely from scratch.

Fig. 14. Primitives guide path planning, reducing unnecessary leg motions.

Fig. 15. Primitives guide transition sampling, reducing unnecessary arm motions.

Fig. 16. Primitives guide the choice of contact, resulting in an easier step.
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Fig. 17. Planning time and objective function values for stair steps, averaged over five runs.

Fig. 18. A planar walking primitive adapted to slightly uneven terrain (see Extension 8).

flat ground while pushing against a vertical wall. Figure 21
shows HRP-2 traversing very rough terrain with slopes up to
40�. This motion was generated using a larger set of primitives,
including steps of several heights, a pivot step and a high step
using a hand contact for balance. In all of these examples, con-
tact sampling was guided by motion primitives, as described in
Section 4.2.2. Planning for the first three examples took about
1 min each. The fourth example took about 8 min.

6. Conclusion

In this paper we have described the design and implementa-
tion of a motion planner that enables legged robots with many
DOFs to walk safely across rough, irregular terrain. We fo-
cused on the application of this planner to two such robots:
the six-legged Lunar vehicle ATHLETE (which has wheels on
the end of each leg, but can fix these wheels to walk), and the
humanoid HRP-2. These robots are mechanically capable of
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Fig. 19. A ladder-climbing primitive adapted to a new ladder with uneven rungs (see Extension 9).

Fig. 20. A side-step primitive using the hands for support, adapted to a terrain with large boulders. Hand support is necessary
because the robot must walk on a highly sloped boulder (see Extension 10).

walking carefully over terrain so rough that a fixed gait is in-
sufficient, but an adequate motion planner is needed to take
advantage of this ability. Our planner is based on a key de-
sign choice, choosing contacts and stances before computing
motions, because on rough, irregular terrain, a legged robot’s
motion is most constrained just when it makes a new contact or
breaks an existing contact (transitions). We extended previous
techniques with several algorithmic tools to deal with difficult
computational issues raised by robots such as ATHLETE and
HRP-2: sampling feasible configurations (in particular, transi-
tions), generating feasible local paths and searching the huge
stance and transition graphs. To improve motion quality, we
also described how to derive a probabilistic sampling strategy
from a small library of pre-computed motion primitives. We
demonstrated the flexibility of our planner with simulation re-
sults for both ATHLETE and HRP-2 on a variety of terrains,
ranging from slightly uneven to very irregular and steep. Our

planner can be applied directly to any other legged robot that
is modeled as a collection of rigid links connected by actuated
revolute joints and that makes contact with the environment
at frictional points. The only details that may change are the
method of sampling candidate configurations when generating
transitions (Section 3.1) and the method of generating motion
primitives (Section 4.1).

Our work still has many limitations that present opportuni-
ties for future work. Along a parallel line of research, a method
of closed-loop control has been designed to execute motion
plans generated by our planning approach (Miller et al. 2006),
by adjusting the robot configuration to the forces applied at
the contacts. This controller makes it possible to reliably ex-
ecute motion plans despite modeling errors. We are currently
working on integrating our planner and this controller. For ex-
ample, by running a planned motion on a dynamic simulator,
it is possible to determine how fast the controller can reliably
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Fig. 21. A motion on steep and uneven terrain generated from a set of several primitives. A hand is being used for support in the
third configuration (see Extension 11).

execute the motion. The planner would also benefit from better
methods to generate high-quality motion primitives and to se-
lect which primitive is most appropriate to help plan each step.
Planning dynamically stable motions might be too hard in gen-
eral, but well-designed primitives could enable such planning
when dynamic moves are critical to reaching a goal. Finally,
our planner could help to design better legged robots by fa-
cilitating the study of their inherent capabilities. For certain
applications, such as space exploration, it could help human
teleoperators to design difficult motions more quickly. A sim-
ilar approach was used to plan motions for the recent Mars
rovers.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video HRP-2 taking a single step to place a
foot

Extension Type Description

2 Video HRP-2 taking a single step to remove
a foot

3 Video ATHLETE walking with an alternat-
ing tripod gait on smooth terrain (fea-
sible).

4 Video ATHLETE walking with an alternat-
ing tripod gait on uneven terrain (in-
feasible). When the chassis is green,
the configuration is feasible. When
the chassis changes color, one or
more constraints have been viola-
ted.

5 Video ATHLETE walking with no fixed
gait on smooth terrain.

6 Video ATHLETE walking with no fixed
gait on uneven terrain.

7 Video ATHLETE rappelling down an irreg-
ular 60� slope with no fixed gait on
smooth terrain.

8 Video HRP-2 on slightly uneven terrain
(planar walking primitive).

9 Video HRP-2 climbing a ladder with un-
even rungs (ladder-climbing primi-
tive).

10 Video HRP-2 traversing large boulders
(side-step primitive).

11 Video HRP-2 on steep and uneven terrain
(multiple primitives).
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