
Motion Planning for a Six-Legged Lunar Robot

Kris Hauser1, Timothy Bretl1, Jean-Claude Latombe1, and Brian Wilcox2

1 Computer Science Department, Stanford University
{khauser,tbretl}@stanford.edu,
latombe@cs.stanford.edu

2 Jet Propulsion Laboratory, California Institute of Technology
Brian.H.Wilcox@jpl.nasa.gov

Abstract. This paper studies the motion of a large and highly mobile six-legged lunar
vehicle called athlete, developed by the Jet Propulsion Laboratory. This vehicle rolls
on wheels when possible, but can use the wheels as feet to walk when necessary. While
gaited walking may suffice for most situations, rough and steep terrain requires novel
sequences of footsteps and postural adjustments that are specifically adapted to local
geometric and physical properties. This paper presents a planner to compute these
motions that combines graph searching techniques to generate a sequence of candidate
footfalls with probabilistic sample-based planning to generate continuous motions to
reach them. The viability of this approach is demonstrated in simulation on several
example terrains, even one that requires rappelling.

1 Introduction

In this paper we describe the design and implementation of a motion planner
for a six-legged lunar vehicle called athlete (All-Terrain Hex-Limbed Extra-
Terrestrial Explorer), shown in Fig 1. This large and highly mobile vehicle was
developed by the Jet Propulsion Laboratory (jpl).1 It can roll rapidly on rotating
wheels over flat smooth terrain and walk carefully on fixed wheels over irregular
and steep terrain. In particular, athlete is designed to scramble across terrain
so rough that a fixed gait (for example, an alternating tripod gait) may prove
insufficient. Such terrain is abundant on the Moon, most of which is rough,
mountainous, and heavily cratered – particularly in the polar regions, a likely
target for future surface operations. These craters can be of enormous size, filled
with scattered rocks and boulders of a few centimeters to several meters in
diameter (Fig. 2). Crater walls are sloped at angles of between 10-45◦, and
sometimes have sharp rims [19].

On this type of terrain, athlete’s walking motion is governed largely by two
interdependent constraints: contact (keep wheels, or feet, at a carefully chosen set
of footfalls) and equilibrium (apply forces at these footfalls that exactly compen-
sate for gravity without causing slip). The range of forces that may be applied
at the footfalls without causing slip depends on their geometry (for example,

1 The views presented in this paper do not reflect those of nasa or jpl.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 301–316, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

302 K. Hauser et al.

wheel pitch

ankle roll
ankle pitch

knee roll
knee pitch

hip yaw

hip pitch

chassis

Fig. 1. The athlete lunar vehicle (developed by jpl)

Fig. 2. Pictures of lunar terrain from Apollo missions [19]

average slope) and their physical properties (for example, coefficient of friction),
both of which vary across the terrain. So every time athlete takes a step, it
faces a dilemma: it can’t know the constraints on its subsequent motion until it
chooses a footfall, a choice it can’t make until it knows where it will step next.
Direct teleoperation does not help to resolve this dilemma – on the contrary,
teleoperation can be difficult and painfully slow for robots like athlete [6].

To handle this dilemma in our planner, we make a key design choice (Sec-
tion 3) – to choose footfalls before computing motions. We begin by identifying a
number of potentially useful footfalls across the terrain. Each mapping of ath-

lete’s feet to a set of footfalls is a stance, associated with a (possibly empty) set
of feasible configurations that satisfy all motion constraints (including contact
and equilibrium). Athlete can take a step from one stance to another if they
differ by a single footfall and if they share some feasible configuration, which we
call a transition. Our planner proceeds in two stages: first, we generate a candi-
date sequence of footfalls by finding transitions between stances; then, we refine
this sequence into a feasible, continuous trajectory by finding paths between

Motion Planning for a Six-Legged Lunar Robot 303

subsequent transitions. We do this because athlete’s motion on irregular and
steep terrain is most constrained just as it places a foot at or removes a foot from
a footfall. At this instant, athlete must be able to reach the footfall (contact)
but can not use it to avoid falling (equilibrium). So footfalls are the “bottleneck”
of any motion – if we can find two subsequent transitions, it is likely we can find
a path between them. This statement has been verified in our experiments.

We implement our planner using an approach similar to [6] and [18] that
combines graph searching techniques to generate a sequence of candidate foot-
falls with probabilistic sample-based planning to generate continuous motions to
reach them. But several key tools embedded in this framework (Section 4) are
tailored specifically to athlete. We need a method of sampling feasible config-
urations (from scratch as well as via perturbation) and of connecting pairs of
configurations with local paths, hard since athlete has many degrees of free-
dom and many closed-loop chains. We also need a heuristic to generate footfalls
and to guide our search through the collection of stances, hard since lunar ter-
rain is difficult (so careful selection of footfalls is important) but not extreme
(so the number of candidate stances is enormous). Finally, we need to smooth
athlete’s motion both to look natural when interacting with a human operator
– hard since the robot is not anthropomorphic – and to help avoid disturbing
the ground (for example, by toppling rock).

Simulation results (Section 5) demonstrate the viability of our approach. We
also show the flexibility of our implementation by adapting it to rappelling as
well as walking motions of athlete.

2 Related Work

2.1 Application

Some humanoids are capable of walking over somewhat uneven terrain [49, 28].
Other legged robots are capable of walking over rougher terrain, including
quadrupeds [20], hexapods [43, 26], parallel walkers [48], and spherically sym-
metric robots [35]. Wheeled robots with active or rocker-bogie suspension can
also traverse rough terrain by changing wheel angles and center of mass posi-
tion [14, 23, 29]. Careful descent is possible by rappelling as well, using either
legs [3, 21, 46] or wheels [32]. The terrain we consider for athlete is even more
irregular and steep than in most previous applications, although not as steep as
for free-climbing robots [6].

Careful walking also resembles dexterous manipulation. Athlete grasps the
terrain like a hand grasps an object, placing and removing footfalls rather than
finger contacts. Athlete has to remain in equilibrium as it moves (only the
object must remain in equilibrium during manipulation), and uses fewer con-
tact modes while walking (no sliding or rolling), but still faces similar chal-
lenges [4, 34]. Manipulation planning, involving the rearrangement of many
objects with a simple manipulator, is another related application. A manipu-
lator takes a sequence of motions with and without a grasped object (different
states of contact) just like athlete takes a sequence of steps [2].

304 K. Hauser et al.

2.2 Planning

In order to walk, athlete must plan both a sequence of footfalls and continuous
motions to reach them. Previous approaches differ primarily in which part of the
problem they consider first:

(a) Motion before footfalls. When it does not matter much where a robot con-
tacts its environment, it makes sense to compute the robot’s (or object’s) overall
motion first. For example, a manipulation planner might generate a trajectory
for the grasped object ignoring manipulators, then compute manipulator trajec-
tories that achieve necessary re-grasps [25]. Similarly, a humanoid planner might
generate a 2-d collision-free path of a bounding cylinder, then follow this path
with a fixed gait [27, 36]. A related strategy is to plan a path for the center of
mass, then to compute footfalls and limb motions that keep the center of mass
stable [13]. These techniques are fast, but do not extend well to irregular and
steep terrain.

(b) Footfalls before motion. When the choice of contact location is critical, it
makes sense to compute a sequence of footfalls first. Most work is based on the
approach to manipulation planning proposed by [2], which expresses connectiv-
ity between different states of contact as a graph. For “spider-robots” walking
on horizontal terrain, the exact structure of this graph can be computed quickly
using analytical techniques [5]. For more general systems, the graph can some-
times be simplified by assuming partial gaits, for example restricting the order
in which limbs are moved [40] or restricting footsteps to a discrete set [28]. But
when motion is distinctly non-gaited (as in manipulation planning [33,37], free-
climbing [6], or for athlete), each step requires the exploration of configuration
space. This motivates the two-stage search strategy we adopt in Section 3.

2.3 Key Tools

Each of the tools embedded in our planner improves and extends previous tech-
niques to satisfy the specific needs of athlete:

(a) Sampling and local connection. We use a variant of the Probabilistic-
Roadmap (prm) approach (see Chap. 7 of [11]) to generate transitions between
stances (configurations that are feasible at both one stance and another) as well
as paths between transitions. A prm planner samples configurations at random,
retaining feasible ones as milestones and connecting close milestones if possible
with feasible local paths. Its performance depends on fast methods of sampling
and local connection, either from scratch across all of configuration space [24]
or via perturbation by growing trees from existing milestones [1, 22, 30]. Closed
kinematic chains (athlete has many) make both of these operations harder
because there is zero probability that an arbitrary configuration will satisfy the
closure constraints. One approach breaks chains into “active” and “passive”
joints, sampling a configuration of the active joints and using analytical inverse
kinematics to solve for the rest [12, 17]. Another approach uses numerical opti-
mization to move a configuration onto the constraint manifold [18, 45, 47]. We
use a combination of these two methods.

Motion Planning for a Six-Legged Lunar Robot 305

(b) Heuristics for footfall selection. A variety of heuristics have been proposed for
estimating the usefulness of a footfall. Most are geometric criteria that determine
how flat a footfall is [9, 10, 31]. On irregular and steep terrain, however, the
usefulness of a footfall also depends on its location with respect to other footfalls
– in particular, on how these footfalls are combined in each stance. We use these
heuristics to guide the search for a candidate sequence of stances to reach a goal
position, similar to [41, 10].

(c) Path smoothing. Paths generated by a prm planner are feasible, but not neces-
sarily optimal. A number of methods have been suggested to improve the result,
including “short-cut” heuristics [24,42] and gradient descent algorithms [44,15].
We use a similar approach. But in addition to being safe and efficient, athlete’s
motions must also “look good” to human operators.

3 Design of the Motion Planner

3.1 Motion Constraints

A configuration of athlete, denoted q, is a parameterization of the robot’s
placement in 3-d space. In the following, q consists of 6 parameters defining the
position and orientation of the robot’s hexagonal chassis and a list of 36 joint
angles (each leg has six actuated, revolute joints). The set of all such q is the
configuration space, denoted Q, of dimensionality 42.

When athlete is walking, a brake is applied to each wheel so it can not roll.
In this case, we call each wheel a foot. Whenever a foot is placed in contact
with the terrain, we call this placement (the fixed position and orientation of a
wheel in 3-d space) a footfall. Since all feet are identical, potentially any foot
could be placed at any footfall. We call a specific mapping of feet to footfalls a
stance. Consider a stance σ with 3 ≤ N ≤ 6 footfalls (in general, at least three
are required to achieve statically stable equilibrium). The feasible space Fσ is
the set of all feasible configurations of the robot at stance σ. To be in Fσ, a
configuration q must satisfy several constraints:

(a) Contact. The N legs whose feet are in contact with the ground form a linkage
with multiple closed-loop chains. So, q must satisfy inverse kinematic equations.
Let Qσ ⊂ Q be the set of all configurations q that satisfy these equations. This
set Qσ is a sub-manifold of Q of dimensionality 42 − 6N , which we call the stance
manifold. This manifold is empty if it is impossible for the robot to achieve the
contacts specified by σ, for example if two contact points are farther apart than
the maximum span of two legs.

(b) Static equilibrium. To remain balanced, athlete must be able to apply
forces with its feet on the terrain that compensate for gravity without slipping.
A necessary condition is that athlete’s center of mass (cm) lie above a sup-
port polygon. But on irregular and steep terrain, the support polygon does not
always correspond to the base of athlete’s feet. For example, athlete will
slip off a flat and featureless slope that is too steep, regardless of its cm posi-
tion. To compute the support polygon, we model the contact interface at each

306 K. Hauser et al.

footfall as a frictional point. Let r1, . . . , rN ∈ R
3 be the position, νi ∈ R

3 be the
normal vector, μi be the static coefficient of friction, and fi ∈ R

3 be the reac-
tion force acting on the robot at each point. We decompose each force fi into
a component νT

i fiνi normal to the terrain surface (in the direction νi) and a
component (I − νiν

T
i)fi tangential to the surface. Let c ∈ R

3 be the position of
athlete’s cm (which varies with its configuration). Assume athlete has mass
m, and the acceleration due to gravity is g ∈ R

3. All vectors are defined with
respect to a global coordinate system with axes e1, e2, e3, where g = −‖g‖e3.
Then athlete is in static equilibrium if

N∑

i=1

fi + mg = 0 (force balance) (1)

N∑

i=1

ri × fi + c × mg = 0 (torque balance) (2)

‖(I − νiν
T
i)fi‖2 ≤ μiν

T
i fi for all i = 1, . . . , N. (friction cones) (3)

These constraints are jointly convex in f1, . . . , fN and c. In particular, (1)-(2) are
linear and (3) is a second-order cone constraint. In practice we approximate (3)
by a polyhedral cone, so the set of jointly feasible contact forces and cm positions
is a high-dimensional polyhedron [8, 6, 7]. Finally, since

c × mg = m‖g‖

⎡

⎣
−c · e2
c · e1

0

⎤

⎦

then (1)-(2) do not depend on c · e3 (the cm coordinate parallel to gravity), so the
support polygon is the projection of this polyhedron onto the coordinates e1, e2.
There are many ways to compute this projection and to test the membership
of c. An approach that works well for our application is [7].

(c) Joint torque limits. The above equilibrium test assumes athlete is a rigid
body, “frozen” at configuration q. In reality, to maintain q each joint must exert
a torque, which in turn must not exceed a given bound. Let τ be the vector of
all joint torques exerted by the robot, and let ‖·‖ be a weighted L∞ norm where
‖τ‖ < 1 implies that each joint torque is within bounds. Then we check joint
torque limits by computing τ that achieves equilibrium with minimum ‖τ‖ (a
linear program), and verify ‖τ‖ < 1.

(d) Collision. In addition to satisfying joint angle limits, the robot must avoid
collision with the environment (except at contact points) and with itself. We use
techniques based on bounding volume hierarchies to perform collision checking,
as in [16, 39].

3.2 Two-Stage Search

To walk from once place to another, athlete has to take a sequence of steps.
Formally, we define a step as any continuous motion at a fixed stance that

Motion Planning for a Six-Legged Lunar Robot 307

Explore-StanceGraph(qinitial, σinitial, σfinal)
1 Q ← {σinitial}
2 while Q is nonempty do
3 unstack a node σ from Q
4 if σ = σfinal then
5 construct a path [σ1, . . . , σn] from σinitial to σfinal

6 i ← Explore-TransitionGraph(σ1, . . . , σn, qinitial)
7 if i = n then
8 return the multi-step motion
9 else

10 delete the edge (σi, σi+1) from the stance graph
11 else
12 for each unexplored stance σ′ adjacent to σ do
13 if Find-Transition(σ, σ′) then
14 add a node σ′ and an edge (σ, σ′)
15 stack σ′ in Q
16 return “failure”

Explore-TransitionGraph(σi, . . . , σn, q)
1 imax ← i
2 for q′ ← Find-Transition(σi, σi+1) in each component of Fσi ∩ Fσi+1 do
3 if Find-Path(σi, q, q

′) then
4 icur ← Explore-TransitionGraph(σi+1, . . . , σn, q′)
5 if icur = n then
6 return n
7 elseif icur > imax then
8 imax = icur

9 return imax

Fig. 3. Algorithms to explore the stance graph and the transition graph

terminates by either placing or removing a foot. In particular, let σ and σ′

be the stances before and after a step, respectively. Then this step is a contin-
uous path from the robot’s current configuration qinitial ∈ Fσ to some config-
uration qfinal ∈ Fσ ∩ Fσ′ that we call a transition. During this step, athlete

may move all legs simultaneously, but we assume that no two feet are placed
or removed simultaneously. Therefore, σ and σ′ differ only by a single footfall,
which is present in only one of the two stances.

We encode the connectivity among stances as a stance graph. Each node of
this graph is a stance. Two nodes σ and σ′ are connected by an edge if there is a
transition between Fσ and Fσ′ . So the existence of an edge in the stance graph
is a necessary condition for athlete to take a step from one stance to another.
Both necessary and sufficient conditions are provided by a transition graph. Each
node of this graph is a transition. Two nodes q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′

are connected by an edge if there is a continuous path between them in Fσ. The

308 K. Hauser et al.

stance and transition graphs represent the connectivity of athlete’s configura-
tion space at coarse and fine resolutions, respectively.

Our planner interweaves exploration of the stance graph and the transition
graph, based on the method of [6]. The algorithm Explore-StanceGraph

searches the stance graph (Fig. 3). It maintains a priority queue Q of nodes to
explore. When it unstacks σfinal, it computes a candidate sequence of nodes and
edges from σinitial. The algorithm Explore-TransitionGraph verifies that
this candidate sequence corresponds to a feasible motion by searching a subset of
the transition graph (Fig. 3). It explores a transition q ∈ Fσ ∩ Fσ′ only if (σ, σ′)
is an edge along the candidate sequence, and a path between q, q′ ∈ Fσ only if σ
is a node along this sequence. We say that Explore-TransitionGraph has
reached a stance σi if some transition q ∈ Fσi−1 ∩ Fσi is connected to qinitial in
the transition graph. The algorithm returns the index i of the farthest stance
reached along the candidate sequence. If this is not σfinal, then the edge (σi, σi+1)
is removed from the stance graph, and Explore-StanceGraph resumes ex-
ploration.

The effect of this two-stage search strategy is to postpone the generation of
one-step paths (a costly computation) until after generating transitions. It works
well because, as we mentioned in Section 1, athlete’s motion on irregular and
steep terrain is most constrained just as it places or removes a foot. In our ex-
periments we have observed that if we can find q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ ,
then a path between q and q′ likely exists in Fσ.

A number of tools are embedded in this framework (the subroutines Find-

Transition and Find-Path, a heuristic for ordering Q, and a method of
smoothing the resulting motion) that we discuss in the following section.

4 Tools to Support the Motion Planner

4.1 Generating Transitions

Both Explore-StanceGraph and Explore-TransitionGraph require the
subroutine Find-Transition to generate transitions q ∈ Fσ ∩ Fσ′ between
pairs of stances σ and σ′. To implement Find-Transition, we use a sample-
based approach. The basic idea is to sample configurations randomly in q ∈ Q
and reject them if they are not in Fσ ∩ Fσ′ . But since Qσ has zero measure
in Q, this approach will never generate a feasible transition. So like [12, 45, 47],
we spend more time trying to generate configurations that satisfy the contact
constraint at σ (hence, at σ′ if σ′ ⊂ σ) before rejecting those that do not satisfy
other constraints. Like [18], we do this in two steps:

(a) Create a candidate configuration that is close to Qσ. First, we create a nom-
inal position and orientation of the chassis: (1) given a stance σ, we fit a plane
to the footfalls in a least-squares sense; (2) we place the chassis in this plane,
minimizing the distance from each hip to its corresponding footfall; (3) we move
the chassis a nominal distance parallel to the plane-fit and away from the ter-
rain. Then, we sample a position and orientation of the chassis in a Gaussian

Motion Planning for a Six-Legged Lunar Robot 309

distribution about this nominal placement. Finally, we compute the set of joint
angles that either reach or come closest to reaching each footfall. Note that a
footfall fixes the intersection of the ankle pitch and ankle roll joints relative to
the chassis (Fig. 1). The hip yaw, hip pitch, and knee pitch joints determine this
position. There are up to four inverse kinematic solutions for these joints – or,
if no solutions exist, there are two configurations that are closest (straight-knee
and completely bent-knee). The knee roll, ankle roll, and ankle pitch determine
the orientation of the foot, for which there are two inverse kinematic solutions.
We select a configuration that satisfies joint-limit constraints; if none exists, we
reject the sample and repeat.

(b) Repair the candidate configuration using numerical inverse kinematics. We
move the candidate configuration to a point in Qσ using an iterative Newton-
Raphson method. We represent the error in position and orientation of each
foot i as a differentiable function fi(q) of the configuration q. Let

g(q) =

⎡

⎢⎣
f1(q)

...
fN(q)

⎤

⎥⎦

so we can write the contact constraint as the equality g(q) = 0. Assume we are
given a candidate configuration q1. Then at each iteration k, we transform this
configuration by taking the step

qk+1 = qk − αk∇g(qk)−†g(qk),

where ∇g(qk)−† is the pseudo-inverse of the gradient of the error function, and αk

is the step size (computed using backtracking line search). The algorithm termi-
nates with success if at some iteration ‖g(qk)‖ < ε for some tolerance ε, or with
failure if a maximum number of iterations is exceeded.

The first step rarely generates configurations in Qσ, but it quickly generates
configurations that are close to Qσ. Conversely, the primary cost of the second
step is in computing ∇g(qk)−† at every iteration, but if candidate configura-
tions are sufficiently close to Qσ then few iterations are necessary. So, it is the
combination of these two methods that makes our sampler fast.

Note that Explore-TransitionGraph additionally requires that we sample
a single transition in each connected component of Fσ ∩ Fσ′ . Our approach is
not guaranteed to do this, but the probability that it samples at least one in
each component increases with the number of samples.

4.2 Generating Paths between Transitions

Explore-TransitionGraph requires the subroutine Find-Path to generate
paths in Fσ between pairs of transitions q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ . We use
a variant of the probabilistic roadmap approach called sbl that is bi-directional
(growing trees from both q and q′) and lazy (delaying the creation of local paths
until a candidate sequence of milestones is found) [38].

310 K. Hauser et al.

Free-Path(q, q′)
1 if the distance from q to q′ is less than ε then
2 return true

3 qmid ← (q + q′)/2
4 if Newton-Raphson from qmid results in qmid ∈ Qσ then
5 if qmid ∈ Fσ then
6 return (Free-Path(q, qmid) & Free-Path(qmid, q′))
7 else
8 return false

9 else
10 return false

Fig. 4. Algorithm to connect close configurations with a local path

To sample configurations in Fσ, we face the same challenge discussed in the
previous section (that a random configuration has zero probability of being
in Qσ), and so we use a similar approach. However, in this case we can fo-
cus our search on a small part of feasible space, near existing milestones in each
tree of the roadmap. Rather than sample a candidate configuration q ∈ Q at
random, we sample it in a neighborhood of an existing configuration q0. Close
to q0, the shape of Qσ is approximated well by the hyperplane

{ p ∈ Q | ∇g(q0)T p = ∇g(q0)T q0 }.

So before applying the iterative method to repair the sampled configuration, we
first project it onto this hyperplane (as in [47]).

To connect milestones with local paths, we face a similar challenge, since the
straight-line path between any two configurations q and q′ will not (in general)
lie in Qσ. So, we deform this straight-line path into Qσ using the bisection
method Free-Path (Fig. 4). At each iteration, Free-Path first applies Newton-
Raphson (see Section 4.1) to the midpoint of q and q′ to generate qmid ∈ Qσ,
then it checks that qmid ∈ Fσ. If both steps succeed, the algorithm continues
to recurse until a desired resolution has been reached; otherwise, the algorithm
returns failure. The advantage of this approach is that it does not require a
direct local parameterization of Qσ, as it may be difficult to compute such a
parameterization that covers both q and q′.

4.3 Ordering the Graph Search

Our two-stage search strategy can be improved by ordering the stances in Q
according to a heuristic cost function g(σ) + h(σ) in Explore-StanceGraph,
where stances with lower cost are given higher priority. We define g(σ) as the
minimum number of steps required to reach σ from σinitial in the stance graph.
We define h(σ) as a weighted sum of several criteria:

Motion Planning for a Six-Legged Lunar Robot 311

• Planning time. We increase the cost of σ proportional to the amount of time
spent trying to sample a transition q ∈ Fσ′ ∩ Fσ to reach it [33].

• Distance to goal. We increase the cost of σ proportional to the distance
between the centroid of its footfalls and those of the goal stance σfinal.

• Footfall distribution. We increase the cost of σ proportional to the difference
(in a least-squares sense) between its footfalls and those of a nominal stance
on flat ground (with footfalls directly under each hip).

• Equilibrium criteria. We increase the cost of σ inversely proportional to the
area of its support polygon.

This heuristic reduces planning time and improves the resulting motion. It also
allows us to relax an implicit assumption – that Find-Transition and Find-

Path always return “failure” correctly. Because we implement these subroutines
using a probabilistic, sample-based approach, we are unable to distinguish be-
tween impossible and difficult queries. So on failure of Find-Transition in
Explore-StanceGraph, we still add σ to the stance graph but give σ a high
cost. Likewise, rather than delete (σ, σ′) on failure of Find-Path, we increase
the cost of σ and σ′.

4.4 Path Smoothing

Because we use probabilistic sample-based methods to sample transitions and
plan paths between them, the motions we generate are feasible (given an ac-
curate terrain model) but not necessarily high-quality. To improve the result,
we apply a method of smoothing similar to [44, 15], which uses gradient de-
scent to achieve criteria like minimum path length and maximum clearance (or
safety margin). However, we modify this approach in two ways. First, athlete’s
motion consists of a sequence of short paths (steps) through separate feasible
spaces rather than a single path through one feasible space. We consider this
entire sequence of paths at once (deforming transitions as well as paths) rather
than each one individually. So during the optimization, different parts of ath-

lete’s motion are subject to different constraints. Second, because athlete is
expected to interact with humans, we try to make its motion “look good” to
human operators. We do this by allowing the operator to select, ahead of time, a
small set of nominal configurations (for example, standing on six legs, standing
on three legs, or crouching). Then, in addition to minimizing path length and
maximizing clearance, we also minimize deviation from any point q along the
path to the closest nominal configuration q′. Even a small number of iterations
(taking about 10 minutes on a 2GHz pc) makes a noticeable difference in motion
quality.

5 Implementation and Results

We tested our planner in simulation on several example terrains. Each terrain is
a height-map of the form z = f(x, y), created using a fractal generation method
and represented by a triangular mesh consisting of 32768 triangles, each about

312 K. Hauser et al.

Fig. 5. Walking on smooth, undulating terrain with no fixed gait

Fig. 6. Walking on steep, uneven terrain with no fixed gait

the size of one of athlete’s wheels. Currently, we randomly sample 200 footfalls
in each terrain to use in our planner, relying on our graph search heuristic
(Section 4.3) to identify which of these footfalls are useful. We are working on
ways to better refine our selection of footfalls (for example, during incremental
sensing), but right now the benefit is marginal.

First, we show that our planner enables athlete to walk across varied ter-
rain. Fig. 5 shows motion on smooth, undulating ground (where all contacts
are modeled with the same coefficient of friction). The initial and final stances
are at a distance of about twice the radius of athlete’s chassis. The resulting
motion consisted of 66 steps. Total computation time was 14 minutes. Fig. 6
shows motion on irregular and steep ground. The resulting motion consisted of
84 steps. Total computation time was 26 minutes. For comparison, Fig. 7 shows

Motion Planning for a Six-Legged Lunar Robot 313

(a) (b)

Fig. 7. Walking with an alternating tripod gait is (a) feasible on smooth terrain but
(b) infeasible on uneven terrain. Infeasible configurations are highlighted red

Fig. 8. Rappelling down an irregular 60◦ slope with no fixed gait

the result of applying a common fixed gait (an alternating-tripod) to both of
these terrains. On smooth ground, the gait works well – it is simpler to plan,
and results in more efficient motion (Fig. 7(a)). On irregular and steep ground,
however, the gait does not work at all – it causes athlete to lose balance or
exceed torque limits at several locations (Fig. 7(b)).

Our results also demonstrate that the planner is flexible enough to handle
different robot morphologies. Fig. 8 shows motion to descend irregular and steep
terrain at an average angle of about 60◦. In this example, athlete is rappelling,

314 K. Hauser et al.

using a tether (anchored at the top of the cliff) to help maintain equilibrium.
We included the tether with no modification to our planner, treating it as an ad-
ditional leg with a different kinematic structure. The resulting motion consisted
of 32 steps. Total computation time was 16 minutes.

6 Conclusion

In this paper we described the design and implementation of a motion planner
for a six-legged lunar vehicle called athlete, developed by jpl. This vehicle
has wheels on the end of each leg, but can fix these wheels to walk carefully
over terrain so rough that a fixed gait is insufficient. We made a key design
choice in our planner – to choose footfalls before computing motions – because
on this type of terrain, athlete’s motion is most constrained just as it places
or removes a foot. We presented several tools embedded in our planner (for
sampling, local connection, search heuristics, and path smoothing) that extend
previous techniques to satisfy the specific needs of athlete. We demonstrated
the flexibility of our planner with simulation results that included both walking
and rappelling motions on several example terrains.

There are many opportunities for future work. For example, our planner takes
a reasonable amount of time for off-line computation (less than one hour), so it
may help human pilots at jpl design difficult motions more quickly. A similar
approach was used to plan motions for the recent Mars rovers. However, our
planner is still too slow to be used on-the-fly (which may require computation
times of less than five minutes). We are working to derive motion strategies or
other methods of model reduction to address this problem. Other important
issues include incremental sensing and a consideration of dynamics.

Acknowledgments. This work was supported by the rtlsm grant from nasa-

jpl, specifically for the athlete project.

References

1. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: In:
Int. Symp. Rob. Res., Siena, Italy (2003)

2. Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In:
Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Alg. Found. Rob.,
pp. 109–125. A.K. Peters, Wellesley (1995)

3. Bares, J.E., Wettergreen, D.S.: Dante II: Technical description, results and lessons
learned. Int. J. Rob. Res. 18(7), 621–649 (1999)

4. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: IEEE Int. Conf.
Rob. Aut., San Francisco, pp. 348–353 (2000)

5. Boissonnat, J.-D., Devillers, O., Lazard, S.: Motion planning of legged robots.
SIAM J. Computing 30(1), 218–246 (2000)

6. Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium con-
straints: The free-climbing robot problem. Int. J. Rob. Res. 25(4), 317–342 (2006)

Motion Planning for a Six-Legged Lunar Robot 315

7. Bretl, T., Lall, S.: A fast and adaptive test of static equilibrium for legged robots.
In: IEEE Int. Conf. Rob. Aut., Orlando, FL (2006)

8. Bretl, T., Latombe, J.-C., Rock, S.: Toward autonomous free-climbing robots. In:
Int. Symp. Rob. Res., Siena, Italy (2003)

9. Caillas, C., Hebert, M., Krotkov, E., Kweon, I., Kanade, T.: Methods for identifying
footfall positions for a legged robot. In: Int. Work. Int. Rob. Sys., pp. 244–250
(1989)

10. Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning biped navigation
strategies in complex environments. In: IEEE Int. Conf. Hum. Rob., Munich, Ger-
many (2003)

11. Choset, H., Lynch, K., Hutchinson, S., Kanto, G., Burgard, W., Kavraki, L., Thrun,
S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press, Cambridge (2005)

12. Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the
motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob.
Aut., Washington, D.C. (2002)

13. Eldershaw, C., Yim, M.: Motion planning of legged vehicles in an unstructured
environment. In: IEEE Int. Conf. Rob. Aut., Seoul, South Korea (2001)

14. Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Pguet, R., Siegwart, R.: An
innovative space rover with extended climbing abilities. In: Space and Robotics,
Albuquerque, NM (2000)

15. Geraerts, R., Overmars, M.: Clearance based path optimization for motion plan-
ning. In: IEEE Int. Conf. Rob. Aut., New Orleans, LA (2004)

16. Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid
interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)

17. Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for
closed chain systems. In: WAFR (2000)

18. Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning.
In: Humanoids, Tsukuba, Japan (2005)

19. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook: A User’s Guide
to the Moon. Cambridge University Press, Cambridge (1991)

20. Hirose, S., Kunieda, O.: Generalized standard foot trajectory for a quadruped
walking vehicle. Int. J. Rob. Res. 10(1), 3–12 (1991)

21. Hirose, S., Yoneda, K., Tsukagoshi, H.: Titan VII: Quadruped walking and manip-
ulating robot on a steep slope. In: IEEE Int. Conf. Rob. Aut., Albuquerque, NM,
pp. 494–500 (1997)

22. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration
spaces. In: IEEE Int. Conf. Rob. Aut., pp. 2219–2226 (1997)

23. Iagnemma, K., Genot, F., Dubowsky, S.: Rapid physics-based rough-terrain rover
planning with sensor and control uncertainty. In: IEEE Int. Conf. Rob. Aut., De-
troit, MI (1999)

24. Kavraki, L.E., Svetska, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Automat. 12(4), 566–580 (1996)

25. Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: IEEE Int.
Conf. Rob. Aut., San Diego, CA, pp. 945–952 (1994)

26. Krotkov, E., Simmons, R.: Perception, planning, and control for autonomous walk-
ing with the ambler planetary rover. Int. J. Rob. Res. 15, 155–180 (1996)

27. Kuffner, Jr., J.J.: Autonomous Agents for Real-Time Animation. PhD thesis, Stan-
ford University (1999)

316 K. Hauser et al.

28. Kuffner Jr., J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning
for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

29. Lauria, M., Piguet, Y., Siegwart, R.: Octopus: an autonomous wheeled climbing
robot. In: CLAWAR (2002)

30. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Rob.
Res. 20(5), 379–400 (2001)

31. Low, K., Bai, S.: Terrain-evaluation-based motion planning for legged locomotion
on irregular terrain. Adv. Rob. 17(8), 761–778 (2003)

32. Mumm, E., Farritor, S., Pirjanian, P., Leger, C., Schenker, P.: Planetary cliff de-
scent using cooperative robots. Autonomous Robots 16, 259–272 (2004)

33. Nielsen, C.L., Kavraki, L.E.: A two level fuzzy prm for manipulation planning. In:
IEEE/RSJ Int. Conf. Int. Rob. Sys., Takamatsu, Japan, pp. 1716–1721 (2000)

34. Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation.
In: IEEE Int. Conf. Rob. Aut., pp. 255–262 (2000)

35. Pai, D.K., Barman, R.A., Ralph, S.K.: Platonic beasts: Spherically symmetric mul-
tilimbed robots. Autonomous Robots 2(4), 191–201 (1995)

36. Pettré, J., Laumond, J.-P., Siméon, T.: A 2-stages locomotion planner for digital
actors. In: Eurographics/SIGGRAPH Symp. Comp. Anim. (2003)

37. Sahbani, A., Cortés, J., Siméon, T.: A probabilistic algorithm for manipulation
planning under continuous grasps and placements. In: IEEE/RSJ Int. Conf. Int.
Rob. Sys., Lausanne, Switzerland, pp. 1560–1565 (2002)

38. Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning:
Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5–26 (2002)

39. Schwarzer, F., Saha, M., Latombe, J.-C.: Exact collision checking of robot paths.
In: WAFR, Nice, France (December 2002)

40. Shapiro, A., Rimon, E.: PCG: A foothold selection algorithm for spider robot
locomotion in 2d tunnels. In: IEEE Int. Conf. Rob. Aut., Taipei, Taiwan, pp.
2966–2972 (2003)

41. Singh, S., Simmons, R., Smith, T., Stentz, A.T., Verma, V., Yahja, A., Schwehr,
K.: Recent progress in local and global traversability for planetary rovers. In: IEEE
Int. Conf. Rob. Aut. (2000)

42. Song, G., Miller, S., Amato, N.M.: Customizing PRM roadmaps at query time. In:
IEEE Int. Conf. Rob. Aut., Seoul, Korea, pp. 1500–1505 (2001)

43. Song, S.-M., Waldron, K.J.: Machines that walk: The adaptive suspension vehicle.
The MIT Press, Cambridge (1989)

44. Vougioukas, S.G.: Optimization of robot paths computed by randomized planners.
In: IEEE Int. Conf. Rob. Aut., Barcelona, Spain (2005)

45. Wang, L., Chen, C.: A combined optimization method for solving the inverse kine-
matics problem of mechanical manipulators. IEEE Trans. Robot. Automat. 7(4),
489–499 (1991)

46. Wettergreen, D., Thorpe, C., Whittaker, W.: Exploring mount erebus by walking
robot. Robotics and Autonomous Systems 11, 171–185 (1993)

47. Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages
with closed kinematic chains. IEEE Trans. Robot. Automat. 17(6), 951–958 (2001)

48. Yoneda, K., Ito, F., Ota, Y., Hirose, S.: Steep slope locomotion and manipulation
mechanism with minimum degrees of freedom. In: IEEE/RSJ Int. Conf. Int. Rob.
Sys., pp. 1897–1901 (1999)

49. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping
surface. IEEE Trans. Robot. Automat. 6(1), 86–96 (1990)

	Motion Planning for a Six-Legged Lunar Robot
	Introduction
	Related Work
	Application
	Planning
	Key Tools

	Design of the Motion Planner
	Motion Constraints
	Two-Stage Search

	Tools to Support the Motion Planner
	Generating Transitions
	Generating Paths between Transitions
	Ordering the Graph Search
	Path Smoothing

	Implementation and Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

