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Abstract— This paper presents a non-gaited motion planner
for humanoid robots navigating very uneven and sloped terrain.
The planner allows contact with any pre-designated part of the
robot’s body, since the use of hands or knees (in addition to feet)
may be required to balance. It uses a probabilistic, sample-based
approach to compute each step. One challenge of this approach
is that most randomly sampled configurations do not satisfy
all motion constraints (closed-chain, equilibrium, collision). To
address this problem, a method of iterative constraint enforce-
ment is presented that samples feasible configurations much more
quickly. Example motions planned for the humanoid robot HRP-2
are shown in simulation.

Index Terms— Humanoid robots, motion planning, non-gaited
locomotion, multi-step planning, equilibrium.

I. INTRODUCTION

A key constraint on the motion of a legged robot—in
particular a humanoid robot—is maintenance of equilibrium.
At each instant, the reaction forces at contacts with the envi-
ronment must exactly compensate for the other forces acting
on the robot. In flat horizontal terrain, a gaited motion can
be pre-computed to satisfy this constraint. However, in highly
irregular terrain (e.g., rocky outdoor terrain, broken urban
environment after an earthquake, lunar surface), the contacts
that a robot can possibly make are arbitrarily distributed, and
sometimes sparse. As a result, each motion step may be unique
and its planning requires deliberate reasoning about contacts,
equilibrium, and collision.

In this paper, we present a motion planner for humanoid
robots navigating rigid, severely uneven, possibly sloped ter-
rain. In such terrain, foot contacts do not always suffice to
achieve equilibrium. So, our planner can make use of any
pre-designated part of the robot’s body (e.g., feet, hands,
knees) to achieve balance. We have successfully tested our
planner on a computer model of the humanoid robot HRP-2
of AIST [1] operating in various virtual environments. Though
still preliminary, our results demonstrate the ability of our
planner to compute complex motions in difficult terrain.

We assume the motion of a humanoid robot consists of
a sequence of steps, each of which maintains a fixed set of
contacts with the environment. A transition from one step to
the next either breaks a contact or makes a new one. As in
dexterous manipulation [2], planning the motion of a humanoid
requires computing both a sequence of contacts and trajectories
to achieve them.

One way to make planning faster is to solve these two
sub-problems separately. For example, if the terrain is nearly
flat, then it does not matter much where a humanoid robot

places its feet. So, it is appropriate first to worry about the
robot’s overall motion (e.g., by modeling the robot as a vertical
cylinder sliding among obstacles) and then to follow this
motion with a regular gait. Alternatively, if the terrain is very
rough, useful contacts are sparse and arbitrarily distributed. So,
it makes more sense to choose the contacts before computing
the trajectories [3].

The second approach (“contact-before-motion”) is the one
we use here. We begin by sampling a number of useful
contacts—associations between points on the robot and points
on the terrain. Each set of contacts forms a potential stance,
at which the robot can take a step. A distinct feasible space
corresponds to each stance: it is the set of robot configurations
at which the stance contacts are achieved, the equilibrium
constraint is satisfied1, and the robot is collision-free (except
at the intended contacts). We search a stance-adjacency graph
for a sequence of stances to reach a goal. Two nodes (stances)
in this graph are connected if they differ by a single contact
and contain a feasible configuration in common. We convert
a sequence of stances into a continuous motion by planning
a single-step trajectory in the feasible space of each stance.
Upon failure, graph search resumes.

Overall, our work extends this contact-before-motion plan-
ning approach, which was previously developed for free-
climbing robots [4], [5], to humanoid robots with more degrees
of freedom. We also make two additional contributions:

• Our planner allows the robot to make contact with any
pre-designated point on its body. So, it allows the robot
to walk on relatively easy terrain, use its hands as needed
in severely broken and steep terrain, and crawl when
obstacles prevent the robot to move standing up.

• Our planner, which embeds a Probabilistic Roadmap
(PRM) technique [6] to compute single-step trajectories,
employs numerical techniques to sample the feasible
space at each stance more quickly by reducing the sam-
pling rejection rate.

This paper gives an overview of our planner, focusing pri-
marily on the second contribution listed above. It is organized
in two parts. The first part discusses our adaptation of the
planner of [3] to humanoid motion planning. The second part
describes our sampling method. We demonstrate in simulation
the ability of our planner to generate motions for HRP-2 in
environments that require the use of hands for mobility (in
particular, rough terrain, high ledges, and ladders).

1In this paper, we only consider quasi-static equilibrium.
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Fig. 1. Three types of contact, showing contact normals and friction cones.

II. HUMANOID LOCOMOTION PLANNING

A basic method for navigating around obstacles on flat
ground approximates the humanoid as a cylinder (or other
bounding volume), plans a 2D collision-free path of this
cylinder, and follows the path with a fixed gait [7], [8]. This
method can generate motions very quickly, since it takes
advantage of the substantial body of research on both 2D path
planning and on creating stable, dynamic walking gaits for
humanoid robots.

Other approaches have been developed for piecewise-flat
terrain (e.g., with stairs), where the robot must step over, onto,
or under obstacles. These methods consider each step individu-
ally. One method searches a grid-based terrain decomposition
using bounds on step length and height, placing individual
footsteps with kinematic planning of the lower body [9].
Another method uses a library of feasible steps [10], [11].

Our work addresses humanoid locomotion in very uneven or
sloped terrain. It is an extension of previous work on motion
planning for a four-limbed free-climbing robot [3]. This robot
climbed an inclined, planar wall by making frictional point
contacts at scattered “climbing holds.” Because the location of
each hold was arbitrary, the climbing motion was non-gaited,
and each “step” was often unique. Therefore, a PRM planner
was used to compute each step. We extend this planner to hu-
manoid robots with an enhanced model of contact (Section III)
and an improved method of sampling (Section VI).

III. CONTACT MODELING

We assume that all robot links and the environment are
perfectly rigid. When a point pR on the surface of a robot
link touches a point pE on the surface of the environment, we
call this association a point contact. We only consider points
pE where there is a unique plane tangent to the environment
surface. The point contact is then characterized by the outer
normal to this plane (pointing away from the environment)
and a coefficient of friction µ. The reaction forces that the
environment can generate span a friction cone of half-angle
tan−1 µ, whose apex is pR = pE and whose axis is oriented
along the outer normal. (In fact, in the rest of this paper, it
is only necessary that the range of possible reaction forces be
a convex set.) A point contact allows the robot link to rotate
freely about the fixed pR.

We model other types of contact between the robot and
the environment by groups of k > 1 point contacts (pR

i , pE
i ),

i = 1, ..., k, occurring simultaneously, where all points pR
i

belong to the same robot link. When k = 2, we have an edge
contact that allows the robot link to rotate freely about the
fixed line passing through pR

1 and pR
2 . When k > 2, we have

a face contact that fully constraints the link’s orientation. By
convention, each point pR

i in a face contact is located at a
vertex of the convex hull of the overlap between the robot
link and the environment. Each type of contact is illustrated
in Figure 1.

In advance, we designate a set of features (points, edges,
and faces) on the robot at which contact is allowed. There is
no restriction on this set, but once it has been chosen, no other
points on the robot’s surface may touch the environment. A
contact is generated by picking a feature and placing it against
a point in the environment. This process is repeated many times
to construct a discrete set of candidate contacts.

This raises the question, “which points in the environment
should be allowed contact with which robot features?” Ideally,
the set of candidate contacts should be large enough to allow
the robot to reach a goal, but not too large to overwhelm the
planner. Hence, picking the “right” contacts is critical. In our
current implementation, we do this either at random or by
hand. We are currently investigating better techniques, based
either on local properties such as the range of reaction forces
at a contact or on other considerations such as the distribution
of contacts.

IV. STATIC EQUILIBRIUM TEST

A configuration q of the humanoid robot is specified by
the translation and orientation of an arbitrarily selected root
link and a set of joint angles. This parameterization is 36-
dimensional for the HRP-2 robot.

Consider a configuration q where the robot makes k point
contacts with the environment. Three kinds of forces act on
the robot: joint torques τ , reaction forces fi at contact points
pi, i = 1, ..., k, and a gravity force at each link g. The robot
is in static equilibrium if these forces sum to zero, the joint
torques are within their limits τmax, and the contact forces
fi lie in their respective friction cones FCi. This yields the
equilibrium conditions

|τ | ≤ τmax

G(q) = τ +
∑

i

JT
i (q)fi

fi ∈ FCi for all i

(1)

where G(q) is the generalized gravity vector, and Ji is the
contact point Jacobian.

For a given configuration q, conditions (1) can be conser-
vatively approximated as a linear program (LP) by inscribing
a polyhedral pyramid inside each friction cone. If the LP is
infeasible, the configuration q is not in equilibrium. If any
feasible solution (τ, f1, ..., fk) can be found then these torques
and contact forces keep the robot in equilibrium at q.

A simpler test can be derived by neglecting torque and
assuming the robot to be a rigid body. Denoting the robot’s
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center of mass by CM(q) and the total gravity force by mg,
we get the rigid-body equilibrium conditions [4]:∑

i

fi + mg = 0∑
i

pi × fi + CM(q)×mg = 0

fi ∈ FCi for all i

(2)

These conditions are necessary for the robot to be in equilib-
rium at q. Though they are not sufficient, experiments show
that the robot’s torque limits are rarely violated when they are
satisfied. In [4] a method is presented that transforms these
conditions into a convex support polygon in the horizontal
plane over which CM(q) must lie. This polygon is fully
determined by the contacts. Checking if CM(q) lies in the
support polygon can quickly reject many configurations before
testing the more expensive conditions (1). In Section VI, the
support polygon will be used to sample feasible configurations
with higher success rate.

V. OVERVIEW OF PLANNER

The structure of our planner is very similar to the one
described in [3]. It consists of a multi-step and a single-step
planner.

The multi-step planner is given a start and a goal config-
uration of the robot, as well a set CONTACT of candidate
contacts. We define a stance σ to be any set of contacts from
CONTACT such that no point on either the robot or terrain
participates in more than one contact. The feasible space Fσ

of the robot is the set of all configurations q where the robot
achieves all contacts in σ and is in static equilibrium and
collision-free . Two stances σ and σ′ are adjacent if σ′ ⊂ σ and
if σ\σ′ contains a single contact from CONTACT. Hence, a
motion that switches from σ′ to σ reaches a new contact, while
a motion that switches from σ to σ′ breaks an existing contact.
This definition can be generalized to allow motions that switch
from a face contact to an edge contact on the face’s boundary
(e.g., moving from contact with the entire foot to just the toes),
or similarly move from an edge to a point.

Let σstart and σgoal be the stances at the start and goal con-
figurations, respectively. The multi-step planner first creates a
sequence of adjacent stances (σ0 = σstart, σ1, ..., σn = σgoal)
likely to contain a feasible motion. It does so by searching a
stance graph Γ, whose nodes are stances, and two adjacent
stances σi and σi+1 are connected with an edge if the tran-
sition Fσi ∩ Fσi+1 is non-empty. The stance graph is defined
in this way because the non-emptiness of Fσi ∩ Fσi+1 is a
necessary condition for a motion to exist from σi to σi+1.
Furthernore, experiments show that for free-climbing robots,
if Fσi−1 ∩ Fσi

and Fσi
∩ Fσi+1 are non-empty, then most of

the time, a feasible path exists between them [3]. This is true
for humanoid robots as well. Therefore, a sequence of stances
in Γ is likely to admit a feasible motion. After eliminating
transitions that are clearly infeasible (e.g. contacts are too far
apart), we can determine if a transition Fσ∩Fσ′ is non-empty

by finding a transition configuration q ∈ Fσ ∩ Fσ′ . We use a
sample-based approach to finding such configurations, which
we present in the next section.

After the multi-step planner produces a sequence of stances,
it tries to transform this sequence into a continuous feasible
path. In each Fσi

, the single-step planner is called to connect
the configurations qi−1 and qi (here we denote the start
and goal configurations respectively as q−1 and qn). Because
feasible spaces are too complex to represent exactly, while all
feasibility constraints can be tested quickly at any configura-
tion, our single-step planner is a sampling-based PRM planner
(see Section VII). Upon failure of the single-step planner to
transform the sequence of stances into a feasible motion, the
multi-step planner is resumed to produce another candidate
sequence of stances.

VI. SAMPLING TRANSITION CONFIGURATIONS

It is critical that our multi-step planner samples transition
configurations q ∈ Fσ ∩ Fσ′ as quickly as possible. This
operation is challenging for two reasons:

• Due to the contact constraints, each feasible space has
fewer dimensions than the robot’s configuration space C,
hence has zero measure in C. So, pure rejection sampling,
which consists of sampling C and then testing if the
generated sample lies in Fσ ∩ Fσ′ , does not work.

• The equilibrium and collision constraints reduce the size
of Fσ ∩Fσ′ (but not its dimensionality). In our tests, it is
often the case that less than 1% of the configurations sat-
isfying the contact constraints also satisfy the equilibrium
and collision constraints.

Below we will compare two sampling approaches. The first
method (direct parameterization) directly generates samples
to satisfy the contact constraints, but allows samples to be
rejected by equilibrium and collision constraints. The second
method (iterative constraint enforcement, or ICE) uses an iter-
ative, numerical technique that spends more time per sample in
an attempt to reduce the rejection rate. Our experiments show
that ICE samples transition configurations faster.

A. Direct Submanifold Parameterization

Assume without loss of generality that σ′ ⊂ σ. For the
robot to be at a configuration in Fσ ∩Fσ′ , it must achieve all
the contacts in the larger stance σ, which imposes a number of
closed-loop kinematic constraints. The set of all configurations
satisfying the contact constraints forms a lower dimensional
submanifold of C.

A direct parameterization allows explicit sampling of the
submanifold where the contact constraints are satisfied [12].
The closed chain is divided into “floating” and “trailing” joints.
First, the floating joint angles are sampled at random. Then,
the trailing joint angles are determined using analytic non-
redundant inverse kinematics (IK). So, the submanifold is
directly parameterized by the floating joint angles.

A sample may fail if there is no inverse kinematics solution
for the trailing joints. For this reason, the random loop gener-
ator (RLG) technique proposed in [12] incrementally samples
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each floating joint angle along the chain in such a way that the
rest of the chain meets a simple necessary condition to close
the loop. This condition is that the endpoint of the sub-chain
whose configuration has been sampled lies within a spherical
approximation of the workspace of the rest of the chain. But
this approximation works poorly when joints have tight limits
(especially for the trailing chain). Our experiments with the
HRP-2 robot indicate that RLG has a low success rate.

B. Iterative Constraint Enforcement

RLG generates few samples that satisfy equilibrium and
collision constraints. Furthermore, analytical IK solutions for
position and orientation constraints are often unavailable for
general manipulators. These shortcomings led us to develop a
sampling approach that handles general robot kinematics and
also reduces the rejection rate.

Our approach is much like numerical IK, a second common
method for sampling closed chain kinematics [13], which uses
iterative numerical root-solving methods to move an initial
configuration into the submanifold of C where the contact
constraints are satisfied. Numerical IK can be viewed as
iterative enforcement of contact constraints. Our ICE method
uses the same framework to iteratively enforce equilibrium and
collision constraints as well.

1) Contact Enforcement: We use the following approach
to enforce contact constraints. Define an error function Cσ(q)
that is zero when all contacts are achieved. Starting from some
initial configuration, we use a Newton-Raphson method to
solve Cσ(q) = 0. At each cycle this method calculates the
pseudo-inverse of the Jacobian matrix of the robot contact
points and takes a step in configuration space to reduce the
constraint residual. This repeats until the residual is below
some tolerance or cannot be reduced further. Tests show that
major speedups are obtained by choosing initial configurations
that do not violate too much Cσ(q) = 0. To do this, we use
the RLG technique to pick floating joint angles at random and
the Cyclic Coordinate Descent [14] technique to pick values
of the trailing joint angles that almost close the loop.

2) Equilibrium Enforcement: Since σ′ ⊂ σ, the robot
must break a contact when it switches from σ to σ′. So,
the equilibrium constraint must be satisfied for the smaller
stance σ′. On difficult terrain this constraint can be very
limiting. Often, only a tiny fraction of configurations satisfying
the contact constraints also satisfy the equilibrium test.

To enforce samples to directly satisfy the equilibrium con-
straint, we use the support polygon derived from (2). We
sample a point p = (px, py) in its interior and we enforce
the CM of the robot at the sampled configuration to lie in the
vertical line passing through p. To do this we simultaneously
solve for Cσ(q) = 0 and the constraints CMx(q) = px and
CMy(q) = py using the same Newton-Raphson technique. As
above, this computes the pseudo-inverse of a Jacobian matrix,
but here the Jacobian includes both the contact points and the
projection of the CM on the horizontal plane.

3) Collision Retraction: Collisions with the environment
and self-collisions are detected using the PQP package [15]. To

TABLE I
SAMPLING RESULTS FOR DOUBLE-LEGGED STANCE ON FLAT GROUND

Direct Parm. ICE
Method RLG Numerical IK All
% Successfully Solved 5.4 89 26
% Pass Equilibrium 0.02 0.9 —
% Pass Collision 0.02 0.4 —
Time / sample (ms) 0.83 9.1 69
Time / feasible sample (s) 4.2 2.3 0.27

eliminate unnecessary self-collision checks, we pre-compute
all possibly colliding pairs of links.

In highly constraining environments, a large fraction of
samples are in collision. To avoid rejecting too many sam-
pled configurations, we retract colliding configurations out of
collision. This approach has been previously used in several
PRM planners to increase the number of configurations sam-
pled in difficult areas of the configuration space (e.g. narrow
corridors) [16], [17]. We incorporate it into ICE as follows.
After generating a sample, we use PQP to detect if there is
a collision. If so, we estimate the deepest penetrating point
and normal using a method similar to [18] and we construct a
function d(q) that approximates the penetration distance as a
function of q by assuming the point and normal to be constant.
On the next iteration, we solve for Cσ(q) = 0, CMx(q) = px,
CMy(q) = py , and d(q) = ε (where ε is a small separation
distance) by extending the Jacobian matrix to the deepest
penetrating points.

C. Experimental Results

We compare some experimental results of the transition
sampling strategies. Table I reports results for the HRP-2
standing on two feet on flat horizontal ground. The support
polygon is 10cm x 20cm under the left foot. The direct
parameterization of RLG is compared to two ICE methods.
“Numerical IK” only enforces contact constraints, using the
method described in Sec. VI-B.1. “All” performs full ICE
as described above. We generated 10,000 samples with each
technique on a 2.8 GHz Pentium IV. A sample is considered
solved successfully if it has a valid analytical IK solution
(in RLG) or achieves convergence (in the ICE methods).
For successfully solved samples, we incrementally tested the
equilibrium constraint and the collision constraints to reject
infeasible samples, so that feasible samples remain after the
collision test. All times include constraint testing. Note that
ICE generates samples that are collision free and almost always
satisfy equilibrium (no samples in this case violated the torque
limits).

RLG generates each sample very quickly, but very few
successfully solve IK. Numerical IK takes more time per
sample, but has a much higher IK success rate. In both cases,
nearly all samples failed the equilibrium test. ICE converges
less often than Numerical IK, but almost always converges on
a feasible sample, causing it to be 16 times faster than RLG.

Other experiments demonstrate similar speed gains when
the area of the support polygon is small (up to several
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Fig. 2. Local planning on the constraint manifold. Orange configurations are
moved into feasible space.

times the size of the HRP-2 footprint). However, for larger
support polygons (up to 1m in width or even unbounded),
including CM enforcement in the iterative process becomes
counterproductive, because most configurations will already
satisfy equilibrium constraints. In such cases, experiments
show that performing ICE without CM enforcement is superior.
Therefore, our planner chooses to enforce a random CM
position when the area of the support polygon is small (under
a specified threshold), but not when the support polygon is
large.

VII. SINGLE-STEP ROADMAP CONSTRUCTION

To connect two transition configurations, our single-step
planner uses a variant of the PRM planner (called SBL)
presented in [19]. Like SBL, our planner constructs a roadmap
made of two trees of sampled feasible configurations. Each tree
is rooted at one of the two transition configurations, and edges
connect feasible configurations. At each cycle, the planner
expands either tree by first picking a node q at random, then
sampling a new feasible configuration q′ in a δ-neighborhood
of q, and connecting q to q′ with an edge. The planner regularly
performs a connection step. First, an additional edge is placed
bridging the two trees, creating a sequence of feasible config-
urations from one transition configuration to the other. Then,
“local” feasible paths are planned between configurations in
this sequence. When the connection succeeds, it returns a
complete path between the two transition configurations. When
the planner exceeds a specified time limit, it terminates with
failure. We make some adjustments to basic SBL for planning
with closed-chain constraints.

• Neighborhood sampling: We first sample the neighbor-
hood of q in C. Then, we solve contact constraints using
numerical IK as described in Section VI-B.1. We repeat
until we get a feasible configuration q′.

• Node connection: Straight-line paths in configuration
space are usually not feasible, so we deform the straight
path between two nodes q and q′ into feasible space.
To do so, we recursively bisect the path segment until
its length is below some small threshold (see Fig. 2 for
an illustration). We project the midpoint of each path
segment into feasible space using the procedure described
in Section VI. On failure, the edge from q to q′ is removed
from the roadmap.

VIII. EXAMPLE MOTIONS

We show several examples of motions generated using
our planner for the HRP-2 robot in very different types of

terrain. A constant coefficient of friction is assumed for all
examples. Since PRM planners randomly explore the robot’s
entire configuration space to produce the motion, we employed
a postprocessing step to make the initially jerky motions look
more smoother and more natural.

Fig. 3 depicts a simple 0.5m stair-step that cannot be
climbed by the HRP-2 only using footsteps, yet permitting
hand contact admits a feasible motion. Six foot contacts were
placed in a row, and six right hand finger contacts were placed
in various positions and orientations on the ledge. The planner
found a 9-stance sequence in about 90s, with roughly 45s spent
on stance graph search and single-step planning each.

Fig. 4 depicts frames from a motion starting in a steep-
walled depression in the ground, which requires using the
hands to climb out and start walking. Frames 2-4 show the
robot using its hands for support as it climbs to higher
ground. The terrain was generated from a heightfield of fractal
noise in a 3m x 3m area, and is depicted as topographical
map. The candidate contacts given to the planner were 800
randomly distributed footholds and fingertip contacts. The final
motion uses 19 steps. Because of the multitude of available
contacts, the planner explored thousands more stances than
were required to plan the motion. Despite the fact that the
single-step motions were planned in just less than 3 minutes,
searching the stance graph took over 3 hours.

Fig. 5 depicts a ladder climbing motion. 45 candidate
contacts were manually generated in obvious locations for the
feet and hands. The stance graph search takes only 7 minutes,
primarily because the candidate contacts were well-placed to
permit a large number of feasible stances. The limiting factor
was single-step motion planning, which took about 3 hours,
likely due to the presence of narrow passages in the feasible
space caused by rungs of the ladder.

These examples demonstrate the versatility of our planner
to handle a variety of terrain, but also expose the fact that
high-quality candidate contact placements are critical for faster
planning.

IX. CONCLUSION

We take a contact-before-motion approach to non-gaited mo-
tion planning for humanoid robots. Our planner first searches
for a sequence of steps that make useful contacts with the
terrain. This is accomplished by sampling feasible transition
configurations between stances. Upon completion, each indi-
vidual step is planned using a PRM planner. This approach
allows us to automatically create motions for rough terrain,
using any part of the body for contact.

Our main technical contribution is a strategy for increas-
ing the success rate of sampling transition configurations. A
numerical technique iteratively refines samples to satisfy the
constraints of the feasible space.

A critical issue in the use of such a planner is starting with
a set of useful candidate contacts. Future work should address
automatically characterizing and extracting useful contacts
from an environment model. Similarly, unnecessary contacts
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Fig. 3. 0.5m stair-step requiring the use of hands
Fig. 4. Using hands to climb out of a depression in fractal noise terrain
Fig. 5. Climbing a ladder

could be avoided during planning with additional work on
analyzing contact reachability.
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