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Control and Planning of 3-D Dynamic Walking With
Asymptotically Stable Gait Primitives

Robert D. Gregg, Adam K. Tilton, Salvatore Candido,
Timothy Bretl, and Mark W. Spong

Abstract—In this paper, we present a hierarchical framework that en-
ables motion planning for asymptotically stable 3-D bipedal walking in
the same way that planning is already possible for zero moment point
walking. This framework is based on the construction of asymptotically
stable gait primitives for a class of hybrid dynamical systems with impacts.
Each primitive corresponds to an asymptotically stable hybrid limit cycle
that admits rules a priori for sequential composition with other primitives,
reducing a high-dimensional feedback motion planning problem into a
low-dimensional discrete tree search. As a constructive example, we de-
velop this planning framework for the 3-D compass-gait biped, where each
primitive corresponds to walking along an arc of constant curvature for a
fixed number of steps. We apply a discrete search algorithm to plan a se-
quence of these primitives, taking the 3-D biped stably from start to goal in
workspaces with obstacles. We finally show how this framework generalizes
to more complex models by planning walking paths for an underactuated
five-link biped.

Index Terms—Asymptotic stability, legged locomotion, path planning,
robot control, switched systems.

I. INTRODUCTION

Passive dynamic walking is characterized by phases of instability
where the center of mass engages in pendular falling until ground reac-
tion forces redirect this motion into the next step cycle. This interplay
between continuous and discrete dynamics results in repetitive mo-
tion that is inherently stable from step to step, i.e., perturbations are
asymptotically dissipated over a walking sequence. Many real-world
robotic systems, such as RABBIT [1], ERNIE [2], MABEL [3], Gib-
bot [4], and Parkourbot [5], exhibit these asymptotically stable gaits.
These robots rely on ballistic momentum and gravitational energy to
drive their unactuated degrees of freedom (DOFs), e.g., passive rotation
of the support foot [1]–[3], [6], which contributes to their speed and
energetic efficiency.

However, asymptotically stable walkers currently lack the same
functionality as humanoid robots, e.g., some require downhill slopes for
strictly gravity-powered walking, are constrained to the sagittal plane of
motion, lack directional control authority, and/or lack redundant joints
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for manipulation. Hybrid nonlinear dynamics make it difficult to prove
stability of a given motion—the robot state cannot be checked at each
instant against closed-form balance conditions like zero moment point
(ZMP, cf., [7]). For this reason, it has been difficult to extend asymp-
totically stable approaches, which rely on numerical analysis [8], into
motion planning applications.

The goal of this paper is to enable motion planning for asymptoti-
cally stable dynamic walking in the same way that planning is already
possible for ZMP-based walking. We will do so by constructing a set of
asymptotically stable “motion primitives” with safety guarantees that
are amenable to established planning methods based on ZMP motion
primitives.

Motion primitives prescribe a library of common actions, such as
walking and climbing, reducing the high-dimensional kinodynamic
planning problem to a discrete sequence of precomputed motions [9],
[10]. Instead of using motion primitives that track ZMP-constrained
joint trajectories, we will build a set of control systems yielding asymp-
totically stable walking gaits. For this purpose, we adopt the energy-
shaping method of controlled reduction [11], which has previously
been used to construct 3-D gaits for both straight-ahead walking and
constant-curvature steering [12], [13].

Gaits capable of steering with mild curvature have similarly been
produced using hybrid zero dynamics in [6]. This approach elegantly
exploits the fact that local asymptotic stability implies local input-to-
state stability: There exist bounds on path curvature and initial condi-
tions that guarantee a bounded change in state between impacts. How-
ever, it is not clear how to derive the bounds for this form of stability
(e.g., the maximum curvature safely allowed from some initial state).

This paper contributes a pair of a priori rules that ensure stable se-
quential composition from a set of asymptotically stable gaits derived
from any low-level controller. We use switched systems theory to prove
these rules, considering the more general case of locally asymptotically
stable (LAS) systems as opposed to globally exponentially stable sys-
tems in [14]. This stability result reduces a high-dimensional control
and planning problem to a low-dimensional discrete tree search, where
paths through the workspace correspond to composite (Lyapunov) fun-
nels that obey the rules admitted by a small set of controllers. This
differs from the pioneering funneling work [15], in which a workspace
is robustified by covering it with regions of attraction from many lo-
cally stabilizing controllers. We extend our preliminary work [16] by
1) implementing a planning algorithm around our two rules; and 2)
considering more complex biped models. Hence, we combine control
and planning into one coherent approach—we are unaware of other
planning results for asymptotically stable 3-D walking.

We begin by describing the 3-D compass-gait biped in Section II,
which we use as a canonical example to construct our planning frame-
work. We formalize the notion of asymptotically stable gait primitives
and the planning problem admitted by such primitives in Section III.
We prove bounds on steering curvature and switching frequency that
allow stable composition of gait primitives in Section IV, implying that
a walking path composed of these primitives may be stably followed
by the robot. We derive a set of primitives and composition rules for
the compass-gait biped (using controlled reduction) in Section V. We
implement a discrete search algorithm in Section VI to plan open-loop
primitive sequences for walking through workspaces with obstacles,
which we then extend to an underactuated five-link 3-D biped. We
conclude with remarks and future work in Section VII.

II. BIPEDAL WALKING AS A HYBRID SYSTEM

In order to study locomotion with impulsive impacts, we must con-
sider both continuous and discrete dynamics in a hybrid system. Bipedal

Fig. 1. Three-dimensional extension of the compass-gait biped.

walking gaits correspond to hybrid limit cycles that are stable from step
to step. We now use the canonical example of the compass-gait biped
to construct the formalisms necessary for our planning framework.

The 3-D extension of the planar compass-gait biped is shown in
Fig. 1. The generalized configuration space of this two-link model is
SE(3) × S

1 , where the stance foot has six DOFs (three position and
three orientation) and the hip has one rotational DOF. Assuming the
ground has sufficient friction and the stance foot is sufficiently large
to remain in contact without slipping or rotating (i.e., fixed Cartesian
coordinates), we can consider the reduced configuration space Q =
SO(3) × S

1 for the continuous dynamics of single-support phase. We
parameterize this space with the coordinate vector q = (ψ, ϕ, θT )T ∈
T

4 , where ψ, ϕ ∈ S
1 are, respectively, the heading/yaw and roll/lean

variables at the stance foot, and sagittal-plane vector θ = (θs , θns )T ∈
T

2 contains the stance and swing leg pitch variables. This choice of
coordinates will allow us to consider dynamical stability independent
of the Cartesian workspace.

This simple biped has no hip link; therefore, each leg has identical
single-support dynamics (i.e., gaits will consist of one step cycle). The
system state is given by x = (qT , q̇T )T in phase space TQ, where
vector q̇ ∈ R

4 contains the joint velocities. Foot-ground impacts are
the only discrete events, which are instantaneous and perfectly plas-
tic; therefore, we define a simple hybrid dynamical system with one
continuous phase

ẋ = f (x) + g(x)u, x ∈ D\G
x+ = Δ(x−), x− ∈ G

(1)

where u ∈ R
m is the control input vector for m ≤ 4, domain D ⊂

TQ is the set of states with nonnegative swing foot height, switching
set G ⊂ D contains states where the swing foot height is zero and
decreasing (a hyperplane in TQ), and Δ: G → D is the reset map
modeling the discontinuous impact event. Details on these dynamics
can be found in [12].

Given a state-feedback controller for input u, (1) becomes a closed-
loop, time-invariant hybrid system that is solved by a curve x(·) : R+ →
TQ called a hybrid flow. An appropriately designed controller will
produce walking gaits that correspond to periodic hybrid flows such
that x(t) = x(t + T ) for all t ≥ 0 and some minimal T > 0 known
as the time to impact between discrete events. When the image of a
periodic flow in TQ is an isolated orbit, it is known as a hybrid limit
cycle.

Hybrid limit cycles correspond to equilibria of the return map P :
G → G, which represents a hybrid system as a discrete system between
impact events. This map sends state xi ∈ G ahead one step to xi+1 =
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Fig. 2. Process flow diagram of planning framework. Dashed line represents feedback that would be needed for iterative planning to compensate for drift.

P (xi ); therefore, a period-one hybrid limit cycle has a fixed point
x∗ = P (x∗). We say that x∗ is stable if for each ε > 0, there exists a
constant γ > 0 such that for all sequences {xi} with |x0 − x∗| ≤ γ,
|xi − x∗| ≤ ε for all i ≥ 0. A fixed point is LAS if it is stable and
|xi − x∗| → 0 as i → ∞.

We know that a hybrid limit cycle is LAS if its associated fixed
point is LAS [1]. We verify LAS of x∗ by computing the linearized
map ∇x P (x∗) in simulation [8]. This yields a discrete linear system
that is asymptotically stable if the magnitudes of the eigenvalues of
∇x P (x∗) are strictly less than one. The local stability region about
fixed point x∗, which is known as the basin of attraction, is then

BoA(x∗) =
{

x ∈ G s.t. lim
i→∞

P i (x) = x∗
}

. (2)

A walking gait corresponds to a LAS fixed point of return map P in
local coordinates x ∈ TQ. Turning gaits have a fixed change in heading
s, resulting in a fixed point modulo yaw

x∗(s) + (s 01×7 )T = Ps (x∗(s)). (3)

Straight-ahead gaits are then asymptotically stable about a zero steering
angle. We will express fixed points as a function of steering angle s
throughout the rest of this paper.

III. ASYMPTOTICALLY STABLE GAIT PRIMITIVES

We now use this construction to define asymptotically stable mo-
tion primitives. We will later see that this concept generalizes to more
complex bipeds that admit LAS hybrid limit cycles, since hybrid me-
chanical systems can be defined as discrete systems using the method
of Poincaré sections [1].

In the context of path planning, we must consider the robot’s world
coordinates in the generalized configuration space SE(3) × S

1 . For
walking on a flat surface, we need only measure the SE(2) coordinates
of stance foot position p ∈ R

2 and heading ψ ∈ S
1 (the first term

in configuration vector q) at every step. The biped’s extended state
is then xe = (pT , xT )T ∈ R

2 × TQ with extended return map P e ,
which updates positions using forward kinematics.

Definition 1: Given a coordinate parameterization h ∈ SE(2), define
the group action

Φh (xe ) = (hT + (pT , ψ), ϕ, θT , q̇T )T . (4)

Extended map P e is equivariant under SE(2) if for all h ∈ SE(2) and
xe ∈ R

2 × TQ, Φh ◦ P e (xe ) = P e ◦ Φh (xe ).
This symmetry property in the global coordinates is guaranteed on

level ground when using a control law that is independent of heading ψ
(based on SO(3)-invariance [17]). We can now formalize the notion of
asymptotically stable motion primitives for 3-D walking through flat
environments.

Definition 2: An asymptotically stable gait primitive with steering
angle s is a pair G(s) = (Ps , x

∗(s)) such that (3) is satisfied and the
extended map P e

s is equivariant under SE(2).
The extended map of a gait primitive yields a fixed point in local

coordinates and a walking arc in SE(2). Transient effects from gait
switching (i.e., converging back and forth between differing orbits)
prevent a fixed mapping from gaits to path arcs during a walking se-
quence, but each gait segment is approximated by a constant-curvature
arc.

Definition 3: The nominal walking arc of primitive G(s) is the pair(
δpT (s), s

)T ∈ SE(2) with heading change s and position displace-
ment δp(s) ∈ R

2 from initial heading ψ = 0.
Walking arcs are composed with different orientations by rotating

the nominal arc’s coordinate frame to coincide with initial heading ψ,
i.e., Rψ δp(s) where Rψ ∈ SO(2) is the standard rotation matrix with
respect to angle ψ.

The basis set P(s) = {G(0),G(s),G(−s)} parameterized by steer-
ing angle s contains three primitives: straight ahead, clockwise (CW),
and counterclockwise (CCW). This set grows a discrete tree of nominal
arcs with branching factor three. If we derive a priori rules that ensure
stable composition between primitives in a set P(s), we will have re-
duced a complicated kinodynamic planning problem in R

2 × TQ to a
discrete search in SE(2). The planning algorithm can then be designed
to output a sequence of steering angles parameterizing gait primitives
(e.g., by preimage backchaining from the goal position [18]). The pro-
cess flow diagram for this hierarchical planning framework is shown
in Fig. 2.

In this construct, the output of the planner drives the event-based
control σ(·) in the discrete switched system

xe
i+1 = P e

σ (i) (xe
i ) (5)

where, at each impact event i, switching signal σ : Z+ → {0, s,−s}
chooses a closed-loop system P e

σ (i) parameterized by the steering angle
of a primitive. We now derive constraints on angle s and signal σ that
ensure stability of (5).
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IV. RULES FOR SEQUENTIAL COMPOSITION

We now present a switched system formulation of the funneling
approach to controller composition [15], by which we derive our main
technical contribution: an upper bound on the steering angle s parame-
terizing basis set P(s), and a lower bound on the switching frequency
of σ in (5). These a priori rules will ensure stable composition of gait
primitives for an n-DOF biped (n = 4 for our example), where we do
not necessarily have a symbolic expression for the return map.

Definition 4: Step cycle i is represented by the pair (xi−1 ,Gi ), where
Gi is the gait primitive employed after the (i − 1)st impact event with
impact state xi−1 . Step cycle i is said to be switching if Gi 	= Gi−1 and
stable if xi−1 ∈ BoA(x∗

i ), where x∗
i is the LAS fixed point of primitive

Gi .
Step cycle i + 1 is then related to cycle i by xi = Pσ (i) (xi−1 ). In-

variance of the basin of attraction implies that step cycle i + 1 is stable
if cycle i is stable and Gi+1 = Gi . We derive the first rule for sta-
ble composition by exploiting a convergence property of continuously
parameterized gaits.

Assumption 1: For every steering angle s ∈ [−S, S] for some
S > 0, there exists LAS fixed point x∗(s) of Ps with corresponding
BoA(x∗(s)). Then, by definition, there exists a nonempty open ball of
radius r(s) > 0 about x∗(s) such that B(x∗(s), r(s)) ⊂ BoA(x∗(s)),
where x∗(s) and r(s) are assumed continuous functions of s.

Property 1: Continuity of function x∗(s) implies convergence
to fixed point x∗(0) in metric space (R2n , d) as s → 0, i.e.,
lims→0 d(x∗(s), x∗(0)) = 0 for Euclidean distance d.

Turning motion more closely resembles straight-ahead motion for
smaller steering angles. We, then, can exploit overlap in neighboring
basins of attraction to derive our first rule.

Rule 1: The absolute turning curvature |s| of basis P(s) is bounded
above by some S̃ satisfying Lemma 1.

Lemma 1: There exists a positive steering angle S̃ ≤ S such that for
all s ∈ [−S̃, S̃]

1) x∗(0) ∈ B(x∗(s), r(s)) ⊂ BoA(x∗(s));
2) x∗(s) ∈ B(x∗(0), r(0)) ⊂ BoA(x∗(0));
3) x∗(−s) ∈ B(x∗(s), r(s)) ⊂ BoA(x∗(s)).
Proof: [1.1] We first define minimal ball radius r :=

minŝ∈[−S,S ] (r(ŝ)), positive by compactness of [−S, S]; therefore

B(x∗(s), r) ⊂ B(x∗(s), r(s)) ⊂ BoA(x∗(s))

for all s ∈ [−S, S]. Since r > 0 and lims→0 d(x∗(s), x∗(0)) = 0,
∃ S̃ ≤ S such that d(x∗(s), x∗(0)) < r for all s ∈ [−S̃, S̃]. Then,
x∗(0) ∈ B(x∗(s), r) for all s ∈ [−S̃, S̃].

[1.2] Similarly, x∗(s) ∈ B(x∗(0), r) for all s ∈ [−S̃, S̃].
[1.3] Recall x∗(s) → x∗(0) as s → 0, which means that for each

ε/2 > 0, ∃ δ > 0 such that for all s ∈ [−δ, δ], d(x∗(s), x∗(0)) < ε/2.
Then, the triangle inequality shows

d(x∗(s), x∗(−s)) ≤ d(x∗(s), x∗(0)) + d(x∗(−s), x∗(0)) < ε.

Hence, lims→0 d(x∗(s), x∗(−s)) = 0.
As in 1.1, ∃ S̃ such that d(x∗(s), x∗(−s)) < r for all s ∈ [−S̃, S̃].

Then, x∗(−s) ∈ B(x∗(s), r) for all s ∈ [−S̃, S̃].
Finally, we take the smallest S̃ from the three proofs. �
Remark 1: If contained in open ball B(x∗(s), r(s)), x∗(0) cannot be

on the boundary of BoA(x∗(s)). Therefore, points sufficiently close to
x∗(0) are also contained in BoA(x∗(s)). The same holds for the other
claims in Lemma 1.

Although a converging trajectory never reaches a fixed point in
finite time, the state will eventually be close enough for switching. If
switching signal σ in (5) provides a sufficiently long dwell time for a
primitive, the state will be funneled into the basins of attraction of the

Fig. 3. Low-level and high-level control loops. Note that G is the switching
set for ground strike, w is the number of primitives in a planned sequence, σ is
the switching signal, and q̈des are the closed-loop joint accelerations.

other primitives. Our second rule, therefore, constrains this signal to
ensure stable composition.

Rule 2: The switching signal σ of (5) has a minimum dwell time
N ≥ 1, i.e., σ(i + j) = σ(i) for all j ≤ N and all i such that σ(i −
1) 	= σ(i), where N satisfies Theorem 1.

Theorem 1: For any s ∈ [−S̃, S̃], there exists a minimal number of
steps N ≥ 1 such that for all integers k ≥ N

1) if x ∈ B(x∗(0), r(0)), then P k
0 (x) ∈ B(x∗(s), r(s));

2) if x ∈ B(x∗(s), r(s)), then P k
s (x) ∈ B(x∗(0), r(0));

3) if x ∈ B(x∗(s), r(s)), then P k
s (x) ∈ B(x∗(−s), r(−s)).

Proof: We know from Lemma 1 and Remark 1 that for
any pair ŝ, s̄ ∈ [−S̃, S̃]2 , ∃ r̄(ŝ, s̄) > 0 (assumed continuous)
such that B(x∗(ŝ), r̄(ŝ, s̄)) ⊂ B(x∗(s̄), r(s̄)). By definition of
LAS, for every ε > 0 and x ∈ BoA(x∗(ŝ)), ∃ Nε,x (ŝ) ≥ 1 such
that for every k ≥ Nε,x (ŝ), d(P k

ŝ (x), x∗(ŝ)) < ε. Letting ε =
minŝ , s̄∈[−S̃ , S̃ ]2 r̄(ŝ, s̄), positive by compactness of [−S̃, S̃]2 , N =
maxŝ∈{0 ,s ,−s}{supx∈B(x ∗( ŝ) ,r ( ŝ)) Nε,x (ŝ)} is finite by completeness
of R and satisfies claims 1–3. �

Note that the minimum dwell time N is conservative, i.e., violating
this rule does not necessarily imply instability. We may not always
be able to explicitly compute the basins of attraction; therefore, in
Section V, we propose a simulation-intensive heuristic to estimate the
value of N . We will also numerically verify that the absolute steering
angle is bounded above by S̃.

We have shown that the stability of a walking sequence is ensured
a priori by two rules: an upper bound on absolute curvature and a
lower bound on dwell time. A hierarchical controller (e.g., a finite-
state machine) for signal σ can then piece together straight and curved
segments such that the turns are not too sharp or the primitive switches
too frequent. By considering LAS systems, this result is more broadly
applicable than the dwell time derived for globally exponentially stable
systems (a stronger form of LAS) in [14]. Our switching framework
is also related to the aperiodic sense of stability considered in [2]. We
now construct an example set of LAS gait primitives.

V. COMPASS-GAIT BIPED EXAMPLE

We now apply this framework to the canonical example of the
compass-gait biped. We will later demonstrate that the framework
generalizes to more complex models that admit LAS gaits (e.g., [6],
[13], [19], and [20]).

The first step is to choose a low-level controller that stabilizes a set
of gaits for the hierarchical system in Fig. 3.
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TABLE I
NOMINAL WALKING ARCS FOR COMPASS-GAIT BIPED

A. Choosing a Stabilizing Low-Level Controller

For simplicity, we assume full actuation (m = n = 4) in our
compass-gait model, but we will consider an underactuated model in
Section VI. The control input u is subject to actuator saturation, where
|uj | ≤ Um ax for all j ∈ {1, . . . , 4}.

Reduction-based control exploits the existence of momentum con-
servation laws to decompose robot dynamics into lower dimensional
control problems [11], [13]. These laws are nonholonomic constraints
that can be controlled as in [13] and [20] to drive yaw toward desired
heading ψ̄ and stabilize lean about vertical ϕ̄ = 0. A geometric reduc-
tion with respect to these conservation laws defines a projection onto
a reduced-order system corresponding to the decoupled sagittal plane
(the ŷ-ẑ plane in Fig. 1). Gaits are then constructed from passively
stable periodic motions in the sagittal plane (e.g., [17]).

A feedback control law is designed for this purpose in [11], which
inverts the plant and reinserts the original dynamics plus shaping and
constraint enforcement terms (see [11] and [13] for details). This con-
troller will interact with the planner as shown in Fig. 3, but we first
must construct a set of gait primitives.

B. Constructing the Primitive Set

We assign common physical parameters from the literature to con-
struct our primitive set: M = 10 kg, m = 5 kg, � = 1 m, and Um ax =
20 N·m. The closed-loop hybrid system yields straight-ahead walking
on flat ground by setting ψ̄ = 0 (without loss of generality) to find
the fixed point x∗(0) as in [12]. We numerically verify LAS of this
straight-ahead gait by linearizing the associated Poincaré map P0 . This
defines the straight-ahead gait primitive G(0) = (P0 , x

∗(0)), which
has a periodic step length of 0.534 m and speed of 0.727 m/s.

We create turning gaits by steering with a constant angle s between
steps, where the event-based controller in (5) increments desired yaw
ψ̄ by s at each impact event [12]. We want to show that for sufficiently
small s, trajectories of the hybrid system converge to a period-one orbit
corresponding to an LAS fixed point (modulo yaw) of Ps . We can then
define CW-turning and CCW-turning gait primitives G(s) and G(−s),
which have mirroring orbits in the yaw/lean coordinates.

Initialized at x∗(0), we observe convergence to a fixed point x∗(s)
for any choice of s ∈ [−S, S], S = 0.492. We densely sample steering
values in [−S, S], find the fixed point for each sample, and confirm LAS
as numerical evidence of Assumption 1 and Property 1. Input-to-state
stability provides that trajectories will remain nearby for steering values
between sufficiently dense samples (arguably with LAS fixed points).
The position displacements for the nominal walking arc associated with
each steering angle are given in Fig. 4.

Although it is difficult to find the exact steering bound S̃ for Rule 1,
we can easily verify the conditions of Lemma 1 for some s by checking
convergence from all fixed points of basis set P(s). We confirm that
Rule 1 is satisfied for s̃ = 0.32 (i.e., s̃ ≤ S̃). The nominal walking arcs
of basis set P(s̃) are given in Table I (see [12] for the fixed points). We
also verify that these simulated gaits do not violate unilateral ground
contact constraints by calculating the ground reaction forces as in [13].

We now must numerically derive the minimum dwell time of Rule
2 for this basis set of primitives.

C. Computing the Switching Bound

The overlapping region between basins of attraction influences the
minimum dwell time N for Theorem 1. If the biped’s transient state
leaves this safe region, an unstable switching scenario becomes possi-
ble. In particular, high-frequency switching may not provide sufficient
time for a gait to attenuate transients. Eventually, the impact-event state
from one gait primitive may be outside the basin of attraction of the next.

We attempt to deduce N forP(s̃) by exhaustively testing gait switch-
ing scenarios with a “random walk,” picking a gait primitive every step
from a uniform random distribution. We observe occasional falls after
dozens of steps, implying that N > 1. We next allow switching every
other step and are unable to produce falls after several lengthy simula-
tions (1000+ steps), suggesting that minimum dwell time N = 2.

This simulation-intensive procedure explores a lower dimensional
discrete space of sequences rather than the full continuous state space,
which allows application to high-dimensional bipeds. The resulting es-
timate is not rigorous, but we have shown that falling scenarios are rare
for the states commonly encountered during walking. Emerging work
on transverse dynamics and sum-of-squares verification to estimate
basins of attraction of hybrid limit cycles [21] may prove essential for
rigorous bounds on dwell time [14].

These simulations provide evidence that the overlapping attractive
region of the primitive set is large, due to the close proximity of the fixed
points, as well as the large sizes of the associated basins of attraction.
Hence, this primitive set is capable of building a large class of stable
walking paths, enabling planning through workspaces (animated on the
right side of Fig. 4).

VI. PATH PLANNING APPLICATIONS

The gait primitive framework (see Fig. 2) provides a layer of abstrac-
tion above the low-level control and stability of a walking mechanism
to enable motion planning by switching between prestabilized gaits. We
can compose these separate primitives in discrete pieces to generate tra-
jectories that simultaneously perform obstacle avoidance and direct the
robot to a goal region in the workspace. In this section, we present one
possible approach to planning based on gait primitives as a proof of con-
cept. Note, however, that the development of this paper opens the pos-
sibility of a wide variety of planning algorithms being used in real robot
systems.

We begin with a basis primitive set, which corresponds to a discrete
subset of the continuous range of steering angles available to the biped.
The set of possible paths (concatenations of motion primitives) can then
be characterized by a tree data structure with branching factor equal
to the cardinality of the primitive set. The number of paths encoded
in this tree expands exponentially as the number d of concatenated
primitives in a path grows. Thus, the tree will represent O(3d ) paths
composed of nominal walking arcs. If d is large (the path length to
be walked is long) and we wish to choose a path based on certain
criteria, i.e., collision free, reaches the goal, and minimizes a cost
function, we will need to heuristically bias the exploration of the search
tree. This is a well-studied problem [22]–[24], and in particular, the
A∗ graph search algorithm is frequently applied to humanoid robots,
e.g., [10] and [25]. We will use a variant of [25] to plan our walking
paths.

We define initial world configuration c0 ∈ SE(2) and goal region
F ⊂ SE(2) so that any stable walking sequence ending at a world
configuration cw ∈ F after some number of steps w is considered
admissible. The planner outputs a steering sequence Sw ∈ {0, s,−s}w

corresponding to the gait primitive for each step in the walking path.
This sequence is designed to produce a trajectory in system (5) that
is collision free and terminates in the goal region, while minimizing a
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Fig. 4. Evolution of (left) x̂-axis and (right) ŷ-axis displacements over steering angle s ∈ [0, 0.492]. (Right) Animation of an example planned walking sequence.
The sequence of primitives is (CCW, CCW, CCW, S, S, S, CW, CW, S, S, S, S, S), where switching steps are indicated by circles at impact events.

Fig. 5. Two planned walking environments with basis set P(s̃), s̃ = 0.32. Planned steps are indicated by gray circles and simulated steps by black X’s. Initial
orientation is shown by a black line from the starting position. Maximum, mean, and final drift values are, respectively, (left) 0.197, 0.107, and 0.169 m and (right)
0.168, 0.105, and 0.168 m. Supplementary downloadable videos are available for these planned walking cases.

scalarized objective function C [Sw ] that penalizes nominal path length
and number of gait switches (according to weight factor α)

C [Sw ] =
w∑

i=1

norm(δp(Sw (i))) + α1{Sw (i) 	= Sw (i − 1)}.

The planner begins by performing a workspace decomposition that
bounds obstacles with safety regions and decomposes the free space
into a set of convex cells. We use the shortest path on the workspace
skeleton1 to identify the path homotopy class2 we will explore to find
our path composed of motion primitives. This heuristic works well
in practice for reducing the number of paths to be explored without
removing desirable paths [25]. Our second complexity-reducing ap-
proximation is a branch and bound style of tree search, where we plan
optimal sequences of motion primitives between subgoal regions in
the configuration space. We identify these subgoals by finding inter-
sections between workspace curves corresponding to the projection of
paths belonging to our selected homotopy class and boundaries of the
workspace decomposition.

We employ the A∗ Algorithm to compute optimal paths between
subgoals. This algorithm expands the search tree by choosing nodes
from a priority queue that is sorted by the cost-to-come, a partial com-
putation of C (on the segment of the primitive sequence explored thus
far), plus the estimated cost-to-go. The true cost-to-go from a node,

1The workspace skeleton is a deformation retract of the free workspace,
which is implemented as a discrete approximation of the generalized Voronoi
diagram.

2Two paths that are homotopic to one another are identical after a homotopic
transformation corresponding to a deformation retract [23].

i.e., the minimal cost to reach the goal set from the configuration of
that node, is not known until the algorithm completes; therefore, it
is approximated with a heuristic function that lower bounds the true
cost-to-go. For this, we use the Euclidean distance between workspace
projections of the robot’s configuration at the node and the closest point
in the next subgoal region. Sequences of motion primitives that violate
dwell-time constraints or likely cause obstacle collisions are pruned
during the process of node expansion. When A∗ terminates, we have
a path plan from one subgoal region to the next. We can then start
a new search from the terminal configuration of this path to the next
subgoal region. The final subgoal region is identical to the goal region,
by which the plan generation is completed.

A. Compass-Gait Biped Results

We use the primitive basis set P(s̃) of Table I with s̃ = 0.32. Setting
weight factor α = 0.6, the planner takes seconds to produce the nom-
inal paths shown in gray in the example environments in Fig. 5. The
compass-gait biped is then simulated with the corresponding sequence
of primitives, resulting in a walking path (shown in black) that traces
the preplanned path into the goal region with only minor drift. In both
cases, the average and final errors from planned step placements are,
respectively, 20% and 32% of one step length.

Recall that the biped does not explicitly track this planned path. The
nominal walking arcs associated with the open-loop primitive sequence
accurately predict the simulated walking path. This is noteworthy given
the transient effects after each switching step. Hundreds of randomly
generated paths show that final drift is more strongly correlated with
the number of switches than steps (determination coefficients of 0.64



IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 6, DECEMBER 2012 1421

Fig. 6. Diagrams of the (left) five-link 3-D biped’s hybrid system, (middle) frontal and sagittal planes, and (right) controlled reduction. The control strategy
decouples the dynamics of the sagittal plane by reducing the yaw DOF of the transverse plane and the roll/lean DOF of the frontal plane.

Fig. 7. Five-link biped. Two-step steering angle of steady-state turning gait
against lean set point ϕ̄ of the inner leg’s stance phase. This curve is an odd
function of the lean set point, i.e., negating the x̂-axis negates the ŷ-axis.

versus 0.28). Occasional replanning, as suggested in Fig. 2, can easily
compensate for drift accumulation after many switches/steps.

B. Five-Link Biped Results

This planning framework can be applied to a large class of bipedal
walkers that admit hybrid limit cycles satisfying Property 1. Model
complexity and underactuation only challenges the low-level control
design. We now demonstrate how the planner generalizes to more
complex models by considering the underactuated five-link 3-D biped
of [19] shown in Fig. 6.

Given the same foot contact assumptions for the compass-gait
biped, the hybrid system of the five-link biped has two distinct phases
during single support: knee swing with six DOFs and knee lock with
five DOFs. We assume that both knee-strike and ground-strike impact
events (respectively triggered by sets Gk and Gg ) are instantaneous and
perfectly plastic, resulting in transitions between the six and five DOF
dynamics according to the left side of Fig. 6. The knee of the stance
leg remains locked through the entire single-support cycle. The yaw
DOF at the ankle is unactuated but subject to viscous damping from
friction (which stabilizes this motion [13]). The other DOFs including
ankle lean and pitch are actuated (m = n − 1) with a torque bound of
40 N·m. We adopt the underactuated formulation of reduction-based
control from [13] to construct a set of two-step gait primitives for this
35-kg biped, where heading is controlled by leaning into turns.

We characterize the state evolution over a two-step gait cycle by
twice composing the return map P : Gg → Gg . The Poincaré map P 2

gives us fixed points as before, reducing this complex hybrid system to
the simple construction of Sections III and IV. Due to the unactuated
yaw DOF, the steering angle s = s(ϕ̄) is now a function of the lean set

TABLE II
NOMINAL WALKING ARCS FOR FIVE-LINK BIPED

point. Fig. 7 shows that this (odd) function is continuous and one to
one, allowing satisfaction of Property 1 as before.

The basis set of primitives P(s(ϕ̄)) that are derived from ϕ̄ = 0.009
is given in Table II. These primitives satisfy Lemmas 1.1 and 1.2
and Theorems 1.1 and 1.2; therefore, switches are possible between
turning and straight-ahead gaits but not necessarily between opposing
(CW/CCW) turning gaits. We estimate the minimum dwell time for
these relaxed conditions following the procedure in Section V-C and
find that switching between straight ahead and turning is allowed every
gait cycle (N = 1). Integrating instantaneous power to compute the
work done per unit weight per unit distance, we find that the mechanical
cost of transport for each primitive is small at 0.037 and similar to
passive dynamic walkers such as the Cornell biped at 0.055 [26].

The only modification needed in the previously described plan-
ning algorithm is that branches corresponding to switches between
CW/CCW are also pruned during node expansion. We expect greater
transient drift from preplanned walking paths due to this model’s lack
of direct steering control; therefore, we expand the safety boundaries
around obstacles and further penalize switches with α = 1. Before sim-
ulating the path output by the planner, we delete the first two primitives
(and twice repeat the last) in the sequence so that the biped employs
each gait primitive two cycles early. This causes leaning ahead of
planned turns to further reduce drift from the desired path.

Fig. 8 shows the planned and simulated paths of the (enlarged) first
example environment. The drift from the desired destination is 2.59 m
after an open-loop sequence of 104 steps, which can be improved with
an iterative planning algorithm. The fact that our high-level framework
is applicable to complex biped models without direct control over
steering is a testament to the significance of the approach. We have
enabled dynamic walking through workspaces for 3-D robots that have
similar energetic efficiency to passive dynamic walkers.

VII. CONCLUSION

We have reduced a complicated feedback motion planning problem
in a high-dimensional state space to a much simpler discrete path plan-
ning problem with a low-dimensional characterization of the robot’s
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Fig. 8 Five-link biped. Planned walking with primitive set P(ϕ̄), ϕ̄ = 0.009.
Nominal primitive arcs are connected by gray circles (representing the second
step of a gait cycle) and simulated steps are indicated by black X’s. Obstacle
safety region of planner delineated by dashed boundaries. The drift from the
desired destination is 2.59 m after an open-loop sequence of 104 steps.

configuration. This allows decomposed planning of asymptotically sta-
ble bipedal walking using search tools developed for ZMP walking [9],
[10], [27], [28].

Our planning framework can potentially be used with any form of
locomotion based on asymptotically stable gaits (e.g., walking [1],
[6], [13], [20], brachiating [4], climbing [5], or running [1], [29]).
Each gait primitive is characterized by a stabilizing controller and a
fixed point, where the associated hybrid limit cycle is LAS in the
closed-loop robot dynamics. Walking motion is not prescribed by full-
state trajectories or subjected to postural ZMP constraints, yet we have
stability over a large class of paths composed of gait primitives.

In order to reach specific goal configurations, future work might
generalize this framework to allow primitive switching within the full
continuous range of available steering angles. Gait primitives and their
stability rules might also be precomputed using the feedback motion
planning method of randomized linear quadratic regulator trees [30]
with sum-of-squares programming [21]. Practical implementations of
the gait primitive framework could integrate a suite of other feedback
motion planning tools, such as step-level planning over rough terrain
[31]–[33] and time scaling for variable walking speeds [34].

Asymptotically stable walking has been experimentally demon-
strated on planar bipeds (e.g., [1]–[3]), and 3-D results will soon be
possible with advances in controller and hardware design. The yaw
DOF in our five-link biped can be controlled passively with viscous
damping [13], allowing more feasible 2-DOF ankle actuation for lean
and pitch. Preliminary work has implemented controlled reduction on
a 16-DOF Sarcos humanoid model to achieve stable balancing [20] and
on the NAO robot for experimental straight-ahead walking [35]. Simi-
lar advances will enable humanoid robots to employ our asymptotically
stable motion planning framework.
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Active Vision During Coordinated Head/Eye Movements
in a Humanoid Robot

Xutao Kuang, Mark Gibson, Bertram E. Shi, and Michele Rucci

Abstract—While looking at a point in the scene, humans continually per-
form smooth eye movements to compensate for involuntary head rotations.
Since the optical nodal points of the eyes do not lie on the head rotation axes,
this behavior yields useful 3-D information in the form of visual parallax.
Here, we describe the replication of this behavior in a humanoid robot.
We have developed a method for egocentric distance estimation based on
the parallax that emerges during compensatory head/eye movements. This
method was tested in a robotic platform equipped with an anthropomorphic
neck and two binocular pan-tilt units specifically designed to reproduce the
visual input signals experienced by humans. We show that this approach
yields accurate and robust estimation of egocentric distance within the
space nearby the agent. These results provide a further demonstration of
how behavior facilitates the solution of complex perceptual problems.

Index Terms—Active perception, behavior-based systems, biologically
inspired robots, humanoid robots, 3-D vision.

I. INTRODUCTION

Autonomous robots often need accurate estimation of the distance
of objects and surfaces in the nearby space. Use of visual information
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would be ideally suited for this task. However, artificial 3-D vision sys-
tems remain highly sensitive to changes in their operating conditions,
thus, seriously limiting the overall degree of robustness of the agent.
Nature has faced a similar problem in the development of self-sufficient
organisms. While stereopsis has become the predominant 3-D vision
technique in robotics [1], [2], depth perception in humans and other
species is an extremely robust process which relies on the analysis of
multiple visual cues.

A highly informative cue used by many species is motion parallax,
the displacement in the retinal position of the projection of an object
as an agent moves through the environment [3]. In robotics, most of
the work on this cue (a field known as depth from motion) has con-
centrated on large relocations of mobile platforms [4]–[12]. However,
there is overwhelming evidence from biology that 3-D vision systems
also benefit from the parallax resulting from more subtle movements,
such as head and eye movements [13]–[16]. Before striking a prey, var-
ious types of insects, including the grasshopper and the mantis, perform
peculiar peering head movements [17], which have been shown to con-
tribute to perceptual judgments of distance. Similar exploratory head
movements have also been observed in birds [18] and primates [19]. In
humans, motion parallax resulting from head motion is used in various
ways, including the control of body sway [20], and presentation on a
2-D display of stimuli that move by different amounts synchronously
with the head induces a vivid 3-D percept [3].

Motion parallax resulting from head and eye movements is com-
plementary to the stereo disparity cue usually considered by active
binocular vision systems. By working simultaneously on each cam-
era, this cue would increase the robustness of a binocular system, as it
would continue to provide information even in the event of failure of
one of the cameras. It would also enlarge the 3-D field of view, as it
enables extraction of depth information in the regions that lack binoc-
ular overlap. Furthermore, it provides a controllable tradeoff between
depth accuracy and computational complexity. In a stereo system, the
disparity range over which to search for corresponding points is pri-
marily determined by the distance between the two cameras (a fixed
parameter, for a given robot), whereas with parallax, the search range
varies with the amount of motion performed.

Here, we examine the 3-D information provided by motion parallax
in an anthropomorphic robotic system that replicates the coordinated
head/eye movements by which humans maintain normal fixation. Past
work has considered only head or eye movements in isolation. For ex-
ample, a recent study emulated the head movements of insects and birds
for distance estimation [21]. Previous work from our group has shown
that replication of human eye movements yields accurate estimation of
egocentric distance within a range of nearby distances [22], [23]. How-
ever, no previous study has examined the impact of mutually compen-
satory head and eye movements similar to those continually performed
by humans under natural viewing conditions. These movements main-
tain the attended objects at the center of the visual field, while providing
reliable parallax.

The remainder of this paper is organized as follows. Section II de-
scribes a method for distance estimation based on the motion parallax
caused by joint head and eye rotations. Section III examines its perfor-
mance and robustness by means of computer simulations. Sections IV
and V detail the results of robotic experiments. Section VI concludes
this paper.

II. DISTANCE ESTIMATION BASED ON HEAD/EYE MOTION PARALLAX

During fixation, humans use small head and eye movements to main-
tain the target within the fovea, the region on the retina with highest
resolution. Since the focal nodal points of the eyes do not lie on the
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