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Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire
when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary
with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all
possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We
show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We
characterize the performance of such an algorithm with experiments in simulation.
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Manipulation planning, manipulation, path planning for manipulators, manipulation, mechanics, design and control

1. Introduction

Figure 1 shows a thin, flexible wire of fixed length that is
held at each end by a robotic gripper. Our basic problem
of interest is to find a path of each gripper that causes the
wire to move between start and goal configurations while
remaining in static equilibrium and avoiding self-collision.
As will become clear, it is useful to think about this problem
equivalently as finding a path of the wire through its set of
equilibrium configurations (i.e. the set of all configurations
that would be in equilibrium if both ends of the wire were
held fixed).

There are two reasons why this problem seems hard to
solve. First, the configuration space of the wire has infinite
dimension. Elements of this space are framed curves, i.c.
continuous maps ¢: [0, 1] — S E(3), the shape of which in
general must be approximated. Second, a countable num-
ber of configurations may be in static equilibrium for given
placements of each gripper, none of which can be com-
puted in closed form. For these two reasons, the literature on
manipulation planning suggests exploring the set of equilib-
rium configurations indirectly, by sampling displacements
of each gripper and using numerical simulation to approxi-
mate their effect on the wire. This approach was developed
in the seminal work of Lamiraux and Kavraki (2001) and
was applied by Moll and Kavraki (2006) to manipulation of
elastic “deformable linear objects” like the flexible wire we
consider here.

Our contribution in this paper is to show that the set of
equilibrium configurations for the wire is a smooth man-
ifold of finite dimension that can be parameterized by a

single (global) coordinate chart. We model the wire as a
Kirchhoff elastic rod (Biggs et al., 2007). The framed curve
traced by this rod in static equilibrium can be described as a
local solution to a geometric optimal control problem, with
boundary conditions that vary with the position and orienta-
tion of each gripper (Walsh et al., 1994; Biggs et al., 2007).
Coordinates for the set of a// local solutions over a// bound-
ary conditions are provided by the initial value of co-states
that arise in necessary and sufficient conditions for optimal-
ity. These coordinates describe all possible configurations
of the elastic rod that can be achieved by quasi-static manip-
ulation, and make manipulation planning—the seemingly
“hard problem” described above—very easy to solve. We
will provide both analytical and empirical results to justify
this claim in the context of a sampling-based planning algo-
rithm. For now, we note that the computations ultimately
required by our approach are trivial to implement.

A variety of applications motivate our work: knot tying
and surgical suturing (Hopcroft et al., 1991; Takamatsu
et al.,, 2006; Wakamatsu et al., 2006; Saha and Isto,
2007; Bell and Balkcom, 2008), cable routing (Inoue and
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Inaba, 1985), folding clothes (van den Berg et al., 2011;
Yamakawa et al., 2011), compliant parts handling (Lin
et al., 2000; Gopalakrishnan and Goldberg, 2005) and
assembly (Asano et al., 2010), surgical retraction of tis-
sue (Jansen et al., 2009), protein folding (Amato and
Song, 2002), haptic exploration with “whisker” sensors that
are modeled as elastic rods (Clements and Rahn, 2006;
Solomon and Hartmann, 2010), etc. We are also motivated
by the link, pointed out by Tanner (2006), between manipu-
lation of deformable objects and control of hyper-redundant
(Chirikjian and Burdick, 1995) and continuum (Rucker
et al., 2010; Webster and Jones, 2010) robots. However, we
acknowledge that our work in this paper is theoretical and
that much remains to be done before any of it can be applied
in practice.

Section 2 gives a brief overview of prior approaches
to quasi-static manipulation of “deformable linear objects”
like the elastic rod. Section 3 provides an introduction to the
key ideas by consideration of a simpler example, namely
an elastic rod that is confined to a planar workspace. Sec-
tion 4 establishes our theoretical framework. The two key
parts of this framework are optimal control on manifolds
and Lie—Poisson reduction. We derive coordinate formu-
lac for necessary and sufficient conditions—in the former
case these formulae are well known, but in the latter case
they are not. Section 5 shows how our framework applies
to the Kirchhoff elastic rod. We prove that the set of all
equilibrium configurations for this rod is a smooth manifold
of finite dimension that can be parameterized by a single
chart. Section 6 explains why this result makes the problem
of manipulation planning easy to solve. Section 7 identifies
several limitations of our approach and suggests ways these
limitations might be addressed.

A preliminary version of this paper has appeared at a con-
ference (Bretl and McCarthy, 2012). Several extensions are
provided here. The discussion of related work in Section
2 and the consideration of a planar elastic rod in Section
3 are both new, as are the physical interpretation of the
coordinate chart we derive (Section 5.4), the precise defi-
nition of “straight-line paths” both in this chart and in the
space of boundary conditions (Section 5.5), the summary
of computations required by our approach, and the empir-
ical results in simulation that we use to justify our choice
of local connection strategy (Section 6.2). In addition, we
provide a more direct proof of Lemma 4, which is the basis
for our main result in Section 5.2. Our ideas in this paper
also follow from, but significantly extend, earlier work on a
simpler model (McCarthy and Bretl, 2012).

2. Related work

There are two main approaches to manipulation planning
for “deformable linear objects” like the elastic rod we con-
sider here, one that relies primarily on numerical simulation
and another that uses task-based decomposition.

The first approach is exemplified by Moll and Kavraki
(2006), who provide a sampling-based planning algorithm
for quasi-static manipulation of an inextensible elastic
rod—as might be used to model flexible wire or surgical
thread—by robotic grippers in a three-dimensional (3D)
workspace. Any framed curve traced by this rod when in
static equilibrium is one that locally minimizes total elas-
tic energy, defined as the integral of squared curvature plus
squared torsion along the rod’s entire length.! The algo-
rithm proceeds by sampling placements of each gripper and
by using numerical methods to find minimal-energy curves
that satisfy these boundary conditions. It measures the dis-
tance between curves by the integral of the sum-squared
difference in curvature and torsion, and connects nearby
curves by spherical interpolation of gripper placement (i.e.
by a local path in the space of boundary conditions),
again using numerical methods to find the resulting path of
the rod. The choice of numerical methods clearly has a sig-
nificant impact on the performance of this approach. Moll
and Kavraki (2006) approximate minimal-energy curves by
recursive subdivision. Many other methods have been pro-
posed (finite element, finite difference, etc.) that we will not
mention here, since they are used for planning in much the
same way. The current state-of-the-art is perhaps the dis-
crete geometric model of Bergou et al. (2008), which has
recently found application in robotics (Javdani et al., 2011).

The second approach is exemplified by the work of
Wakamatsu et al. (2006) and of Saha and Isto (2007) on
knot tying with rope. Knot tying is an example of a manip-
ulation task in which the goal is topological rather than
geometric. It does not matter exactly what curve is traced
by the rope, only that this curve has the correct sequence
of crossings. Motion primitives can be designed to ensure
that crossing operations are realizable by robotic grippers—
Wakamatsu et al. (2006) use primitives that rely on the rope
being placed on a table and immobilized by gravity, while
Saha and Isto (2007) use primitives that rely on fixtures,
which they refer to as “needles” by analogy to knitting. This
approach has been generalized to folding paper by Balkcom
and Mason (2008) and to folding clothes by van den Berg
et al. (2011). “Crossings” are replaced by “folds,” again
realized either by relying on fixtures or on immobilization
by gravity.

Like the first approach, we consider a geometric goal in
this paper and model equilibrium configurations as local
minima of total elastic energy. However, instead of rely-
ing on numerical simulation, we will derive coordinates
that explicitly describe the set of all possible equilibrium
configurations for our object of interest, a Kirchhoff elas-
tic rod. This result will allow us to plan a path of the
rod through its set of equilibrium configurations—Ilike the
second approach—rather than plan indirectly by sampling
placements of each gripper.

We have been strongly influenced by prior analysis of
the Kirchhoff elastic rod using calculus of variations and
optimal control. This analysis has been done both from a
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Fig. 1. Quasi-static manipulation of an elastic rod (orange) by robotic grippers (blue). Notice that the grippers begin (fa) and end (i) in
the same position and orientation. This motion corresponds to a single straight-line path in the global coordinate chart we derive in this

paper.

Lagrangian (Langer and Singer, 1984, 1996) and a Hamilto-
nian (Walsh et al., 1994; Jurdjevic, 2005; Biggs et al., 2007)
perspective. It has led in some cases to global descriptions
of extremal solutions—often called “solution manifolds”—
similar to what we derive in this paper. For example, Ivey
and Singer (1999) show that closed and quasi-periodic
extremals of uniform, isotropic, linearly elastic rods are
parameterized by a two-dimensional (2D) disc. Similarly,
Neukirch and Henderson (2002) classify extremals of elas-
tic rods with clamped boundary conditions and apply
numerical continuation to explicitly compute the set of all
such extremals (Henderson and Neukirch, 2004). Recent
work in particular gives a more or less complete picture
of planar elastic rods (Sachkov, 2008a, 2008b) and builds
on the same basic theory—from Agrachev and Sachkov
(2004)—that we use in this paper. We also note the study
of conjugate points in elastic filament models of DNA by
Hoffman (2004). The sufficient conditions for optimality
that we derive in the following two sections essentially
rely on the non-existence of conjugate points. None of
this work has been applied yet to manipulation planning—
Camarillo et al. (2008) and Rucker et al. (2010) are closest
to making this link, in the context of continuum robots (e.g.
tendon-driven or concentric-tube).

In this discussion, we have omitted previous work that
is not directly related either to analysis or manipulation of
a Kirchhoff elastic rod. Our results may nonetheless have
some relevance to this other work (e.g. on fair curves and
minimal-energy splines in computer graphics) that it might
be useful to explore. Readers may refer to the survey pro-
vided by Moll and Kavraki (2006) or to the text of Antman
(2005) for a broader overview.

(q1(0),92(2))

Fig. 2. A planar elastic rod in static equilibrium, held at each end
by a robotic gripper.

3. Planar example

In this section, we briefly consider the manipulation of an
elastic rod that is confined to a planar workspace. Our dis-
cussion is relatively informal and is meant to introduce
some basic concepts that we will develop throughout the
remainder of this paper.

3.1. Static equilibrium as optimal control

We call the object in Figure 2 a planar elastic rod. Assum-
ing it is thin, inextensible, and unit length, we describe the
shape of this rod by a continuous map ¢: [0,1] — R3. The
elements ¢ (7) and ¢,(#) are the “x” and “y” coordinates of
the curve traced by the rod at any point # € [0, 1], and the
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element ¢3(7) is the tangent angle to this curve. We require
the map ¢ to satisfy

g1 = Cos g3
g2 = sing; (1)
G =u

for some u: [0, 1] — R, which can be interpreted as strain
(in bending). We refer to ¢ and u together as (q,u). We
assume that the base of the rod is held fixed at the origin,
so that ¢(0) = 0. The other end is held by a robotic grip-
per, which we assume can impose arbitrary ¢(1) € R3. For
fixed ¢(1), the rod will remain motionless only if its shape
locally minimizes total elastic energy. In particular, we say
that (g, u) is in static equilibrium if it is a local optimum of
the deterministic, continuous-time, optimal control problem

. 1!
minimize — Wt
q.u 2 Jo

coS g3
subject to g = | sing; )
u
q(0)=0
g()=">

for some b € R3. The cost function in equation (2) is a com-
monly used, first-order approximation to elastic energy that
is valid under the assumption of small deformations. This
assumption requires only that the strain u(¢) stays small, not
that changes in the configuration (g, #) are small. In partic-
ular, the configuration shown in Figure 2 exhibits “small
deformations” (as do the configurations in Figure 1 and,
indeed, in all of the examples considered in this paper). We
also note that although equilibrium configurations (g, u) are
local optima of equation (2), there is nothing “local” about
our model. Every possible equilibrium configuration is a
local optimum of equation (2) for some choice of b.

3.2. Quasi-static manipulation

Small changes b + §b in gripper placement will, in general,
give rise to small changes (¢ + 8¢, u + du) in a local opti-
mum of equation (2), i.e. in an equilibrium configuration of
the planar elastic rod. The problem of quasi-static manipu-
lation planning is to find a continuous map 8: [0, 1] — R3
so that as s increases continuously from 0 to 1, there is a
local optimum of equation (2) with b = B(s) that changes
continuously from (¢start, Ustart) t0 (ggoal, Ugoal)-

An immediate challenge in searching for g is that the
gripper placement b does not uniquely define the configu-
ration (g, u) of the rod. In general, equation (2) has many
local optima for fixed b (e.g. see Figure 3), none of which
can be computed in closed form. A similar challenge arises
in path planning for pick-and-place motions of an n-joint
robot arm, where there are (in general) many inverse kine-
matic solutions for a given placement of the end-effector.
There, we can avoid reasoning about the multiplicity of

inverse kinematic solutions by planning in the joint space
(e.g. 8" x "+ x S") rather than in the task space (e.g. SE( 3)).
We would like to apply this same approach to quasi-static
manipulation, planning a path of the rod rather than of the
gripper. However, it is not obvious how to describe the set of
all equilibrium configurations (i.e. the set of a// local optima
of equation (2) over all possible b € R*), which is the natu-
ral analog of “joint space” in this context. We show how to
do this in the following section.

3.3. Analysis of equilibrium configurations

Considerable insight can be obtained by applying the max-
imum principle of Pontryagin et al. (1962) to the optimal
control problem equation (2). If

(q,u) 1 [0,1] > R*> x R

is a local optimum of equation (2), then the maximum
principle tells us that there must exist a co-state trajectory

p:[0,1] - R
and a constant £ > 0, not both zero, that satisfy

q = VPH(ps qs ka u)T

3
p=—-VH(p,q,k, u)T ®

and

H(p(),q(0) k,u(t)) = max H (p(t),q(1) . k,v)  (4)

for all ¢ € [0, 1], where

H(p,q,k,u)=p)cosqs + prsing; + psu — k%u2
is the Hamiltonian function associated with equation (2).
When applying these necessary conditions, we often dis-
tinguish between the abnormal case in which k = 0, and the
normal case in which k£ > 0, where as usual we may simply
assume that £k = 1 (see, for example, Souéres and Boisson-
nat (1998)). Taking the abnormal case first, the conditions
in equations (3) and (4) require that

g1 = cosq3 p1=0
qZ = sin q3 pz =0 (5)
G =u P3 = p1sings — p, cos ¢3

and

0 =ps,
respectively. Since py, p», and
p1Sings — pr cos g3

are evidently all constant, it must be the case that ¢ is also
constant. We conclude that (g, ) is “abnormal” if and only
if u(r)= 0 for all + € [0,1], i.e. if and only if the rod
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@Djf‘ﬁ

Fig. 3. Quasi-static manipulation of a planar elastic rod. Notice that the grippers begin and end in the same position and orientation—
gripper placement does not uniquely define the configuration of the rod.

is straight. Turning now to the normal case, equation (3)
requires equation (5) just as before, while equation (4) now
requires that

u=p;s. (6)

From equations (5) and (6), we see that “normal” (¢, «) and
p are completely defined by p(0), the choice of initial co-
state. It is also easy to verify that
u(t)y=0"forallt € [0,1] <<=  p2(0)=p3(0)=0,

so every abnormal (g, u) is also normal. As a consequence,
every possible equilibrium configuration of the planar elas-
tic rod can be generated by an appropriate choice of p(0) €
R3. In particular, the set of a/l equilibrium configurations—
analogous to the “joint space” for an n-joint robot arm—is
apparently a subset of R3. This result is already somewhat
remarkable, given that arbitrary configurations (g, #) live in
a space of infinite dimension.

3.4. Physical interpretation of the co-state
trajectory

The co-state trajectory p: [0,1] — R? that is produced
by application of the maximum principle has a physical
interpretation. To provide this interpretation, we begin by
assuming that p(#) describes the force and torque acting on
the rod at ¢ € [0, 1], and proceed to check if this assumption
allows us to reconstruct the governing equations equation
(5) and equation (6). In particular, consider a small piece
of the planar elastic rod, as shown in Figure 4(a). In static
equilibrium, a force and torque balance requires that

pi(t+ At) —pi(t) =0

pat+ At —pr(1) = 0

p3(t+ At —p3(1) = pi(t + A1) @a(t + A1) —qa(1))
—pat+ A @it + A —q1(D) .

In the limit as At — 0, we recover

p1=0
pr=0 @)
D3 = p1g2 — p2g1 = p1Sings — p2cosqs,

exactly as in equation (5). Equation (6) follows immediately
from the linear relationship between stress and strain. We
conclude that p(¢) does indeed describe force and torque,
and specifically that every equilibrium configuration is
completely defined by the force and torque at the base of
the rod (i.e. by p(0)). It is even possible to show that (g, u)
is abnormal if and only if p(0) is indeterminate, a result that
will be useful to us in characterizing degeneracies of the
mapping from b + 6b to (g + 8¢, u + Su).

Before proceeding, we consider the same force and
torque balance in a local reference frame, as in Figure 4(b).
Define ju: [0,1] — R as

w1t cosgs(f) singz() O | pi(?)
pa(t) | = | —sings(®) cosqs(®) O |p2(?)
w3 () 0 0 1] [ p3(

for all ¢ € [0, 1]. Either by applying this transform to equa-
tion (7) or by taking a force and torque balance, we find
that

1 = a3
M2 = —[1 U3 (®)
/'.1/3 = —M2,

where u© = us3. Equations (7) and (8) are equivalent—any
equilibrium configuration can be generated either by spec-
ifying p(0) or by specifying (0). However, it is interest-
ing to note that equation (8)—unlike equation (7)—has no
dependence on ¢. This sort of “reduction” will become very
important as we generalize our approach to a geometric
setting.

Finally, notice that the signed curvature of the curve
(91,¢2) : [0,1] — R? that is traced by the planar elastic
rod is given by k = u = u3. It is easy to verify that

2k 4 K% = Ak 9)
and equation (8) are equivalent, where
ho= 13(0)* +2011(0)

is a constant of integration. In this way, we recover the
variational constraint in equation (9) that would have been
produced by analysis of equation (2) from a Lagrangian
perspective (as in Langer and Singer (1984, 1996)).
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p2(t+A1)

p1t+A1)

p3(t+An)
pi(®)

p2(t)
(a)

pa(t+01)
pt+00)

u3(t+A1)
ui(r)
us(1)

(1)
(b)

Fig. 4. Forces and torques applied to a piece of the planar elastic rod (a) in a global reference frame and (b) in a local reference frame,

providing a physical interpretation of the co-state trajectory.

3.5. Outline

In the rest of this paper, we make precise the ideas discussed
above and generalize them to enable quasi-static manipula-
tion of an elastic rod in a 3D workspace. A key difference
in what follows is that the rod’s shape will be described by
q:[0,1] = SE(3) instead of ¢: [0,1] — R?, and conse-
quently that equation (2) will become a problem of optimal
control on manifolds. To obtain the necessary conditions
for optimality that are analogous to what appeared in Sec-
tion 3.3, we will be forced on rely on a geometric statement
of Pontryagin’s maximum principle. We provide these nec-
essary conditions—as well as sufficient conditions, which
were completely ignored in the above discussion and which
are considerably more involved—in Section refsec:theory.
We apply them to study the mechanics of the elastic
rod in Section 5, and to study manipulation of this rod in
Section 6.

4. Theoretical framework

We will see in Section 5 that the framed curve traced by
an elastic rod in static equilibrium is a local solution to a
geometric optimal control problem. Here, we provide the
framework to characterize this solution. This framework
essentially relies on a geometric statement of Pontryagin’s
maximum principle (Pontryagin et al., 1962). Section 4.1
reviews smooth manifolds and is included to fix notation.
Section 4.2 states the necessary and sufficient conditions
for optimality on manifolds in a form that is useful for us.
Section 4.3 derives coordinate formulae to compute these
necessary and sufficient conditions. Most of these results
are a translation of Agrachev and Sachkov (2004) in a style
more consistent with Marsden and Ratiu (1999) and Lee
(2003). We conclude with coordinate formulae to test suf-
ficiency for left-invariant systems on Lie groups (Theorem
4), an important result that is not in Agrachev and Sachkov
(2004) and that is hard to find elsewhere.

4.1. Smooth manifolds

In this section, we review some basic facts about smooth
manifolds. We do so mainly to establish notation for what
follows.

Let M be a smooth manifold. The space of all smooth
real-valued functions on M is C*°(M). The space of all
smooth vector fields on M is X(M). The action of a tan-
gent vector v € T,,M on a function / € C*(M)is v - f.
The action of a tangent covector w € T, M on a tangent
vector v € T,M is (w,v). The action of a vector field
X € X(M)ona function f € C*°( M) produces the function
X[f] € C*°(M) that satisfies

X[f1(m) = X(m) f
for all m € M. The Jacobi-Lie bracket of vector fields
X,Y € X(M) is the vector field [X,Y] € X(M) that
satisfies
X YT =X Y1 - Y [IX[F1]
forall f € C*(M).If F: M — N is a smooth map between
smooth manifolds M and N, then the pushforward of F
at m € M is the linear map 7,,F: T,M — TpumN that
satisfies
T F(v)f=v-(foF)

forallv € T,M and /' € C°°(N). The pullback of F at

m € M is the dual map T F: T, \N — T, M that satisfies

(TrF(w),v) = (W, TuF(v))

forall v € T,,M and w € Ty, N. We say I is degener-
ate at m € M if there exists non-zero v € T,,M such that
T, F(v)= 0. It is equivalent that the Jacobian matrix of any
coordinate representation of F at m has zero determinant.
The Poisson bracket generated by the canonical symplectic

form on T*M is
{-,-}: CAT* M) xC®(T*M)— C®(T*M).

The co-tangent bundle 7*M together with the bracket {-, -}
is a Poisson manifold. The Hamiltonian vector field of H €
C>®(T*M) is the unique vector field Xy € X(T*M) that
satisfies

X [K]={K,H}

for all K € C*®°(T*M). It is equivalent to say that H is
a Hamiltonian function for the vector field Xy. We use
this same notation when H (hence, Xy) is time-varying.
Finally, we use 7w : T*M — M to denote the projection map
satisfying w(w,m)=m forallw € T M.
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4.2. Optimal control on manifolds

In this section, we state the necessary and sufficient con-
ditions for optimal control problems on smooth manifolds.
These conditions are analogous to what is provided by Pon-
tryagin’s maximum principle, which is usually applied to
optimal control problems on Euclidean space.

Let U C R” for some m > 0. Assume g: M x U —
Rand f: M x U — TM are smooth maps. Consider the
optimal control problem

q

1
minimize / g @), u(f))dt
U 0

10

subject to qt)=f @q),u(t)) forall t € [0,1] (10)
q0)=q0,  g(1)=qu,

where ¢o,q1 € M and (q,u): [0,1] — M x U.

Define the parameterized Hamiltonian function

H: T*M xR x U — R by

H(p,q, k,u)= (p.f(q.u)) — kg(q. u),

where p € T;M. The following theorem is a geometric
statement of Pontryagin’s maximum principle (Pontryagin
etal., 1962):

Theorem 1 (Necessary conditions). Suppose (qopt, topt)
[0,1] = M x U is a local optimum of equation (10). Then,
there exists k > 0 and an integral curve (p,q): [0,1] —
T*M of the time-varying Hamiltonian vector field Xy,
where H: T*M x R — R is given by H(p,q,1)=
H(p. q. k. ton(0). that satisfies q(1) = qop(t) and

H(p(0).q(t). )= max H(p(t) .q(t) . k) (1)
for all t € [0,1]. Furthermore, if k = 0, then p(t)# 0 for
all t € [0, 1].

Proof. See Theorem 12.10 of Agrachev and Sachkov
(2004). O

We call the integral curve (p, g) in Theorem 1 an abnor-
mal extremal when & = 0 and a normal extremal otherwise.
As usual, when k£ # 0 we may simply assume £ = 1. We
call (¢, u) abnormal if it is the projection of an abnormal
extremal. We call (¢, #) normal if it is the projection of a
normal extremal and it is not abnormal.

Theorem 2 (Sufficient conditions). Suppose (p,q) : [0,1]
— T*M is a normal extremal of equation (10). Define H €
C®(T*M) by

H(p,q)=maxH(p.g,1,u), (12)
assuming the maximum exists and 92H /ou? < 0. Define
u: [0,1] = U so u(t) is the unique maximizer of equation
(12) at (p(t),q(t)). Assume that Xy is complete and that

there exists no other integral curve (p',q'") of Xy satisfying
q()y=¢'(t) forall t € [0,1]. Let ¢: R x T*M — T*M be

the flow of Xy and define the endpoint map ¢, T;(O)M - M
by ¢(w)= 1 o (t,w, q(0)). Then, (q,u) is a local optimum
of equation (10) if and only if there exists no t €(0, 1] for

which ¢, is degenerate at p(0).

Proof. See Theorem 21.8 of Agrachev and Sachkov (2004).
O

4.3. Lie—Poisson reduction

The necessary and sufficient conditions provided by Theo-
rems 1 and 2 are, in principle, all we need to characterize
solutions to optimal control problems on manifolds. How-
ever, it is not apparent yet how to compute anything—in
particular, how to compute integral curves ( p, ¢) or to estab-
lish non-degeneracy of the endpoint map ¢;. In this section,
we apply the Lie—Poisson reduction to provide coordinate
formulae for computation in the specific case where the
manifold is a Lie Group and the Hamiltonian function is
left-invariant. As we will see in Section 5, this case is
satisfied by a Kirchhoff elastic rod.

First, we establish some additional notation. Let G be a
Lie group with identity element e € G. Let g = 7,G and
g* = T7G. For any q € G, define the left translation map
Ly: G— Gby

Ly(r)=qr
forall » € G. A function H € C*°( T*G) is left-invariant if

H (T Ly(w),r) = H(w,s)

forall w € T;G and ¢q,7,s € G satisfying s = L,(7). For
any ¢ € g, let X, be the vector field that satisfies

X{(Q) = TeLq( C)
for all ¢ € G. Define the Lie bracket [-,-]: g X g — g by
[¢,n] = [X:, X, (e)

for all ¢,n € g. For any ¢ € g, the adjoint operator
ad; : g — g satisfies

ad;(n)=[¢,n]

and the co-adjoint operator ad? . g* — g* satisfies

{ad; (), n) = (w.ad, n)

for all n € g and u € g*. The functional derivative of & €
C>®(g*) at u € g* is the unique element 5§4/5u of g that
satisfies

li

s—0 N

h(u+s8u)—h(u)_< 8h>
m - 8:“’98_
%

forall S € g*.

Next, we revisit our statement of necessary conditions for
the optimal control problem equation (10) in the case where
M = G and where the Hamiltonian H is left-invariant. The-
orem 1 implies the existence of a particular integral curve
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(p,q) in the cotangent bundle 7*G. The following theorem
implies the existence of a corresponding integral curve w
in the dual Lie algebra g*. This result is important because
g* is a vector space and so u can be readily computed by
solving a system of ordinary differential equations, as we
will see in Theorem 4 (to follow).

Theorem 3 (Reduction of necessary conditions). Suppose
the time-varying Hamiltonian function H: T*G x [0,1] —
R is both smooth and left-invariant for all t € [0, 1]. Denote
the restriction of H to g* by h = H|gx0,1). Given py €
T, G, let 2 [0,1] — g* be the solution of

(13)

with initial condition j1(0) = T} Ly, (po). The integral curve
(p,q) : [0,1] = T*G of Xy with initial condition p(0) = po
satisfies

po= ady, s, (1)

p()= q(t) q(t)*l (u(0)
for all t € [0, 1], where q is the solution of
q = Xsnssu(q)
with initial condition q(0) = qy.

Proof. See Theorem 13.4.4 of Marsden and Ratiu (1999).
O

In what follows, it will be convenient for us to introduce
coordinates on g and g*. Let {Xj,...,X,} be a basis for g

and let {Py, ..., P,} be the dual basis for g* that satisfies
(P, X) = 8,
for i,j € {1,...,n}, where §; is the Kronecker delta. We

write ¢; to denote the ith component of ¢ € g with respect
to this basis, and so forth. Define the structure constants
Cf; € R associated with our choice of basis by

n

2 Cii

k=1

(X, X1 = (14)

fori,j e {l,...,n}.

Finally, we revisit our statement of sufficient conditions
for equation (10), and provide coordinate formulae to test
the non-degeneracy of the endpoint map ¢, that was defined
in Theorem 2. These formulae can be evaluated by solving
a system of linear, time-varying matrix differential equa-
tions, something that is easy to do using modern numerical
methods. We require two lemmas before our main result in
Theorem 4:

Lemma 1. Letq: U — G be a smooth map, where U C R?
is simply connected. Denote its partial derivatives ¢ : U —
gandn: U — g by

dq(t,€)
C(1,€) = TyeerLyge < ot )
(15)
dq(t,€)
(€)= Tyeo oo | —5 )

Then,
a¢  an

5~ o =Ll (16)

Conversely, if there exists smooth maps ¢ and n satisfying
equation (106), then there exists a smooth map q satisfying
equation (15).

Proof. See Proposition 5.1 of Bloch et al. (1996). ]

Lemma 2. Let«, B,y € g and suppose y = [«, B]. Then

ZZarﬁs s

r=1 s=1

Proof. This result is easily obtained from the definition in
equation (14). ]

Theorem 4 (Reduction of sufficient conditions). Suppose
that H € C*(T*QG) is left-invariant and that Xy is com-
plete. Let h = H|g+ be the restriction of H to g* and
let p: R x T*"G — T*G be the flow of Xy. Given qy €
G, define the endpoint map ¢,: T, G — G by ¢(p) =
mop(t,p, qo). Givenpg € T; G, leta € R" be the coordinate
representation of T Ly, (po), i.e.

n
TiLgy(po)= Y aPi.

(17)
i=1
Solve the ordinary differential equations
ZZ%S iell,...,n (18)
j=1 k=1
with the initial conditions u;(0)= a; for i € {1,...,n}.

Define matrices F,G,H € R"*" as follows:

I B IE

aMJ r=1 s=1
d Sh
[Gly =+~
M O

"\ Sh

[H]; = — ; a—mc,j.

Solve the (linear, time-varying) matrix differential equa-
tions

M = FM (19)
J=GM +HJ (20)
with initial conditions M(0)= [ and J(0)= 0. The

endpoint map ¢, is degenerate at py if and only if
det (J(#)) = 0.

Proof. Define the smooth map p: R* — T7 G by

pla)=T, qo qo (Za, ’)'
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This same expression defines p: R" — T,(7; G) if we
identify 7; G with 7),(T; G) in the usual way. Given po
p(a) for some a € R", there exists non-zero A € Ty, (T, G)
satisfying 7,,¢,(A) = 0 if and only if there exists non zero
s € R" satisfying T, @¢( p(s)) = 0. Define the smooth map
q:[0,1] x R*" — G by ¢(t,a) = ¢, o p(a). Noting that

dq(t,a) .
2D T, (TqOan.(P,))
J
forj e {1,...,n}, we have

n 8 ’
Tpayd:( p(s)) = Zsj q(t a).
Jj=1

By left translation, 7,4 ¢:( p(s)) = 0 if and only if

- dq(t,a)
0= 5Tl < e ) 21
j=1 I
Foreachj e {1,...,n}, let
j dq(t,a)
n](t, a) == Tq(t,d)Lq(t,a)—l (a— .
a;

Define J: [0, 1] — R™” so that J(¢) has entries
[31; = nj(t. @),

i.e. the jth column of J(#) is the coordinate representation
of 7/(t, a) with respect to {X1,...,X,}. Then, equation (21)
holds for some s # 0 if and only if det (J(£)) = 0. We
conclude that ¢, is degenerate at py if and only if
det (J(r)) = 0.

It remains to show that J(#) can be computed as described
in the theorem. Taking (f), ..., u,(f) as coordinates of
u(t), it is easy to verify that equations (13) and (18) are
equivalent (see Marsden and Ratiu (1999)). We extend each
coordinate function in the obvious way to 1, : [0, 1] xR” —
R, so w;(t,a) solves equation (18) with initial condition
1i(0,a)= a;. Define M: [0, 1] — R™" by

[M(?) ] = i/ 0a;.

Differentiating equation (18), we compute

D s ZZ "3 )

. d 3/L,
My = -2 = = =5 =
ot 8aj da; o aa — =

-y (ZZ )

k=1 r=1 s=1
=mew
k=1

It is clear that [M(0) ]; = 6, so we have verified equation
(19). Next, define

aq(t,a)
ot ) '

¢(t,a)= Tyea)Lyga) <

We have

g9 g @ 8h [éh
"= [g’n]]_a"jaﬂ [M’n]

from Lemma 1 and Theorem 3. We write this equation in
coordinates by application of Lemma 2:

“ 9 Sh\ 9
- 5 () B

Ok S

n n (Sh . )
LT

k=1

:Z]QMMM+Z]EMH@
k=1 k=1

It is clear that [J(0)]; = 0, so we have verified equation
(20). O

5. Mechanics of an elastic rod

The previous section derived coordinate formulae to com-
pute necessary and sufficient conditions for a particular
class of optimal control problems on manifolds. Here, we
apply these formulae to a Kirchhoff elastic rod.

We begin with three results that suffice to describe all
possible configurations of the rod that can be achieved
by quasi-static manipulation. Section 5.1 recalls that any
framed curve traced by the rod in static equilibrium can
be described as a local solution to a geometric optimal
control problem (Walsh et al., 1994; Biggs et al., 2007).
Section 5.2 proves that the set of all trajectories that are
normal with respect to this problem is a smooth man-
ifold of finite dimension that can be parameterized by
a single chart (Theorem 6). Section 5.3 proves that the
set of all normal trajectories that are also local optima
is an open subset of this smooth manifold, and pro-
vides a computational test for membership in this subset
(Theorem 7).

We conclude with two additional results that, as we will
see in Section 6, are useful in the context of a sampling-
based planning algorithm for manipulation planning. Sec-
tion 5.4 provides a physical interpretation of the coordinate
chart we derive as a space of moments and forces. Sec-
tion 5.5 defines a “straight-line path” in both this chart and
in the space of boundary conditions.

5.1. Model

We refer to the object in Figure 1 as a rod. Assuming that
it is thin, inextensible, and of unit length, we describe the
shape of this rod by a continuous map ¢: [0, 1] — G, where
G = SE(3). Abbreviating T,L,(¢) = ¢¢ as usual for matrix
Lie groups, we require this map to satisfy

q = q(u Xy +uXo + u3 Xz + Xy) (22)

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on August 1, 2014


http://ijr.sagepub.com/

Bretl and McCarthy

57

for some u: [0,1] — U, where U = R? and

700 0 0 0010 0-100
00—10 0000 1000
X=10100["=|=1000"={00 00
10000 0000 0000
(0001 0000 0000
0000 0001 0000
Xa=10000|"=]0000| =]0001
10000 0000 0000

is a basis for g. Denote the dual basis for g* by {Py, ..., Ps}.
We refer to g and u together as (q,u) : [0,1] = G x U or
simply as (g, u). Each end of the rod is held by a robotic
gripper. We ignore the structure of these grippers, and sim-
ply assume that they fix arbitrary ¢(0) and g(1). We further
assume, without loss of generality, that g(0) = e. We denote
the space of all possible ¢(1) by B = G. Finally, we assume
that the rod is elastic in the sense of Kirchhoff (Biggs et al.,
2007), so has total elastic energy

1 1
3 / (clu% + czug + C3u§) dt
0

for given constants cj, c;,c3 > 0. For fixed endpoints, the
rod will be motionless only if its shape locally minimizes
the total elastic energy. In particular, we say that (g, #) is in
static equilibrium if it is a local optimum of

minimize

1 1
_ / (clu% =+ Czu% + cw%) dr
q:u 2 0

q = q(ui Xy + uxXo + u3 Xz + Xy)
q(0)=e, g)y=">

. 23
subject to @3)

for some b € B.

5.2. Necessary conditions for static equilibrium

We have seen that if a Kirchhoff elastic rod is in static
equilibrium, then its configuration (g, #) must be a local
solution to the geometric optimal control problem in equa-
tion (23). In this section, we apply the necessary conditions
for optimality to show that the set of all normal (g, u) is a
smooth 6-manifold that can be parameterized by a single
chart. Coordinates for this chart are given by the open sub-
set A C R® that is defined by equation (27) in the following
theorem. Our main result is then Theorem 6.

Theorem 5. A trajectory (q,u) is normal with respect to
equation (23) if and only if there exists : [0,1] — g* that
satisfies

[ = uzfy — Uz 43 fg = uzfLs — Uz g

P2 = e+ urps — uzp pes = uiphe — usps  (24)
3 = —ps + Uy — U2 e = Upjhg — U5,

g = q(nXi + u X + us Xz + Xa), (25)
wi=c'w  forallie{1,2,3}, (26)

with initial conditions q(0)= e and w(0)= Z?:l a;P; for
some a € A, where

A={a € RS (a,a3,a5,a6) #£(0,0,0,0)} . (27)

Proof. We begin by showing that (¢, «) is abnormal if and
only if u = u3 = 0. Theorem 1 tells us that (g, u) is abnor-
mal if and only if it is the projection of an integral curve
(p,q) of Xy that satisfies equation (11), where

H(p,q.0)= H(p,q,0,u(t))
and
H(p,q,0,u)= (p,q(11 X1 + ur X + X3 + X3) ) .
For any g, r € G satisfying ¢ = gr, we compute
H(T;Lg(p),r.1)
=(TFLy(p).g ' q(urXy + 12Xs + u3 X3 + X3) )
= (p.g (g7 'g(u X1 + 1Xo + us X3 + X3) )
= (P, q(u Xy + . Xo + u3 X5 + Xa) )
=H(p,q.1),

(28)

so H is left-invariant. As a consequence, the existence of
(p, q) satisfying the conditions of Theorem 1 is equivalent
to the existence of u satisfying the conditions of Theorem 3:

q=q(5h/8p),

where & = H|g+. Application of equation (18) produces the
formulae in equations (24)—(25), where we require ©; =
Uy = u3 = 0 to satisfy equation (11). We therefore have
2 = e and i3 = —pus, hence us = pe = 0. Applying
this result again to equation (24), we find fis = —usus = 0
and (g = up s = 0. Since pu cannot vanish when £ = 0, we
must have w4 # 0, hence uy = u3 = 0, with u; an arbitrary
integrable function. Our result follows.

Now, we return to the normal case. As before, Theorem 1
tells us that (g, ©) is normal if and only if it is not abnormal
and it is the projection of an integral curve ( p, ¢) of X that
satisfies equation (11), where

o= adg, 5, (1) and

H(p,q,0)= H(p,q, L, u(t)

and

H(p,q,1,u) = (p, q(u1 X; + X + usX3 + X3))
— (clu% + czug + cw%) /2.

By a computation identical to equation (28), H is left-
invariant. Application of equation (18) to the conditions
of Theorem 3 produces the same formulae in equations
(24)—(25), where equation (26) follows from equation (11)
because H is quadratic in u. It remains to show that trajec-
tories produced by equations (24)—(26) are not abnormal if
and only if a € A. We prove the converse. First, assume
a € RO\A, so (a2, as3,as,as)=(0,0,0,0). From equations
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(24) and (26), we see that u, = u3 = 0, hence (g, u) is
abnormal. Now, assume (g, ) is abnormal, so uy = u3 = 0.
From equation (26), we therefore have u, = 3 = 0, and in
particular a; = a3 = 0. Plugging this result into equation
(24), we see that (1, = ue and 13 = —pus, hence also that
ws = e = 0, i.e. that as = ag = 0. So, a € R°\ A. Our
result follows. ]

Theorem 5 provides a set of candidates for local optima
of equation (23), which we now characterize. Denote the
set of all smooth maps (¢, u) : [0,1] — G x U under the
smooth topology? by C*([0, 1], G x U). Let

C c C*([0,1],G x U)

be the subset of all (¢, u) that satisfy Theorem 5. Any such
(g,u) € C is completely defined by the choice of a € A, as
is the corresponding w. Denote the resulting maps by

W(a)=(q,u) I'(a)= p.

We require three lemmas before our main result in
Theorem 6.

Lemma 3. If Y(a)= Y(d) for some a,a € A, then
a=4d.

Proof. Suppose (¢,u)= W¥(a) and u = I'(a) for some a €
A. It suffices to show that a is uniquely defined by u (and its
derivatives, since u is clearly smooth). From equation (26),
we have

a; = cju;(0)
ay; = C‘zuz(O) (29)
az = C3M3(0).
From equation (24), we have
as = —c3i3(0) +ayar(c; ' — ef!
5 3u3(0) +ar1ax( ¢y 1) (30)

. —1 —1
as = c2ir(0) —ajaz(c;” —c3 ).

It is now possible to compute ;(0) and fi;(0) for i €
{4,5, 6} by differentiation of

M4 = Uzs — U2 L6
s = —[3 + Uz 1 — Ui jd2

M6 = M2 — U L3 — U3,

€2))

where we use equation (26) to find derivatives of 1;(0)
for i € {1,2,3}. Based on these results, we differentiate
equation (24) again to produce

(c3'az)as = ¢y 'arag — f15(0)

(&5 @) ay = ¢ aras + fu6(0)

(—as+arax(c;' — ;M) ag = c3(ey (11(0) ag
+ a1 116(0)) —ji5(0)) —a3/14(0)

(a5 + aras(c;' — ¢ as = ey ' ([11(0) as

(32)

At least one of these four equations allows us to compute ay
unless
(a2, a3,as,as)=(0,0,0,0),

which would violate our assumption that a € A. Our result
follows. O

Lemma 4. The map V: A — C is a homeomorphism.

Proof. The map W is clearly a bijection—it is well-defined
and onto by construction, and is one-to-one by Lemma 3.
Continuity of W also follows immediately from Theorem 5.

It remains only to show that W~': C — A is
continuous. This result is a corollary to the proof of
Lemma 3. From equation (29), we see that a;, a,, a3 depend
continuously on u(0). From equation (30), we see that
as,as depend continuously on aj,a,as, u(0), hence on
u(0), (0). From equation (31), we see in the same way that
14(0), 115(0), 126(0), fi5(0), fis(0) depend continuously on
u(0),u(0),1(0). Hence, all of the quantities in equation (32)
depend continuously on «(0), #(0), #(0), so a4 does as well.
Our result follows. O

Lemma 5. If the topological n-manifold M has an atlas
consisting of the single chart (M,«), then N = a(M) is a
topological n-manifold with an atlas consisting of the single
chart (N, idy), where idy is the identity map. Furthermore,
both M and N are smooth n-manifolds and «: M — N is a
diffeomorphism.

Proof. Since (M, ) is a chart, then N is an open subset of
R" and « is a bijection. Hence, our first result is immedi-
ate and our second result requires only that both o and ™!
are smooth maps. For every p € M, the charts (M, «) and
(N,idy) satisfy a(p) e N, a(M)= N, and idyo c o™ =
idy, so « is a smooth map. For every ¢ € N, the charts
(N,idy) and (M, &) again satisfy o~ (q) € M, a"'(N)= M,
and @ o o~ ! oidy = idy, so «~! is also a smooth map. Our
result follows. O

Theorem 6. C is a smooth 6-manifold with smooth struc-
ture determined by an atlas with the single chart (C, W™").

Proof. Since V: A — C is ahomeomorphism by Lemma 4
and A C R® is open, then (C, ¥ ~!) is a chart whose domain
is C. Our result follows from Lemma 5. O

5.3. Sufficient conditions for static equilibrium

As we have seen, any trajectory (¢, u) that is normal with
respect to the optimal control problem equation (23) can be
represented in coordinates by a point a € \A. In this section,
we show that any such point a produces a local optimum
W(a) of equation (23) if and only if it is an element of a
particular open subset Agpie C A. In particular, the follow-
ing theorem provides a computational test for membership
in this subset:

Theorem 7. Let (q,u)= W(a) and n = T'(a) for some
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0 ey =) (et =g 0 0 0
(et =3 0 (et =) 0 0 1
Fo | (e =) mle! —eh 0 0 -1 0
0 —e/c2 Ms/cs 0 m3fcs  —p2/ca
He/cl 0 —a/c3 —us3/cs 0 /e
—us/c Ha/ca 0 Hajfcr  —ui/c 0
G =diag(c;'.¢; ", ¢;',0,0,0)
0 m3fcs  —pa/ca 0 0 0
—/L3/C3 0 ,lL]/C] 0 0 0
H= [Lz/Cz —M1/01 0 0 0 0
0 0 0 0 uz/cs  —pa/c
0 0 1 —u3/c3 0 mi/cr
0 -1 0 ma/ca  —pi/e 0

Solve the (linear, time-varying) matrix differential
equations

M = FM

. (33)

J=GM+HJ
with initial conditions M(0) = I and J(0)= 0. Then, (g, u)
is a local optimum of equation (23) for b = q(1) if and only
if det(J(7)) # 0 for all t €(0,1].

Proof. As we have already seen, normal extremals of equa-
tion (23) are derived from the parameterized Hamiltonian
function

H(p,q, L,u) = (p,q(n1 Xy + wrXo + usXs + Xy))

1
-3 (crui + cou3 + c313) .

This function satisfies

2H

e —diag(cy,c2,c3) < 0

and admits a unique maximum at
~1
up=c¢; (P, qXi)

for i € {1,2,3}. The maximized Hamiltonian function is

1 3
H(p,q)=5 3 (1.aX)* + (p.Xa)

i=1

It is clear that Xj; is complete. By Lemma 3, the mapping
from (q,u) to a and hence to u ['(a) is unique. By
Theorem 3, it is equivalent that the mapping from (g, u) to
(p,q) is unique. As a consequence, we may apply Theo-
rem 2 to establish sufficient conditions for optimality. Since
a computation identical to equation (28) shows that H is
left-invariant, we may apply the equivalent conditions of

Theorem 4. Noting that the restriction 7 = H|g« € C*(g")

is given by
2 2
%
Ha + _3> + (4,
(&) C3

it is easy to verify that F, G and H take the form given
above. Our result follows. O

1 2
W =3 (ﬂ +
c

As we have said, Theorem 7 provides a computational
test of which points ¢ € A actually produce local optima
W(a)e C of equation (23). Let

-Astable cA

be the subset of all a for which the conditions of Theorem
7 are satisfied and let

Cstable = LIl(./‘lstab]e) cC.

An important consequence of membership in Aggpe is
smooth local dependence of solutions to equation (23) on
variation in b. Define

Byavie = {b € B: there exists (q, u) € Cyabic
for which ¢(1) = b}.

Let ®: C — B be the map taking (¢, u) to g(1). Clearly
Astable 1 0pen, so

W4 Astable = Cstable

stable *

is a diffeomorphism. We arrive at the following result:
Theorem 8. The map

D oWy Astable = Bstable

stable *

is a local diffeomorphism.

Proof. The map ® o W[4, is smooth and by Theo-
rem 7 has non-singular Jacobian matrix J(1). Our result
follows from the Implicit Function Theorem (Lee, 2003,
Theorem 7.9). ]
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it +An

palt +Ar)
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Fig. 5. Forces (14, 15, [tg) and torques (41, 2, i03) applied to a
piece of the elastic rod, providing a physical interpretation of the

co-state trajectory.

5.4. Physical interpretation of A

In this section, we derive equations (24) and (26) in another
way that gives a physical interpretation of the coordinate
chart

A={aeR": (ay,a3,as,a6)#(0,0,0,0) } .

Given the integral curve u: [0, 1] — g, define

wi(f) wa(t)
m(f)= | p2(?) and  f(0)= | pus(0)
wu3(t) we(?)

for t € [0,1]. We will show that m(¢) and f(f) describe
moment and force, respectively, acting on the rod at any cut
t € [0, 1], both expressed in the local coordinates defined
by ¢(#). Consider a piece of the rod corresponding to the
interval [#,# + Af] C [0, 1], as shown in Figure 5. Define
R € SO(3) and v € R? so that

[’g ﬂ — () g+ A,

If our interpretation of m and f is correct, then—in static
equilibrium—a force and moment balance requires

—£(t) +R f(t + At)= 0

—m@)+R m(t+ ANVt + AD)) =0, (34)

where “~ is the mapping

0 —V3 %)
/17 = V3 0 —V]
-V, W 0

that implements a cross product (see Murray et al. (1994)).
For small A¢, we approximate equation (34) to first order as

—£(6) +8(t + A1)+ A1 () £t + A)) = 0

—m(f) +m(t + A?) +At(u() m(t + Af)

+& f(t + A1)~ 0, (35)

where
1
€ = 0
0

This result may be obtained, for example, by taking a
series expansion of equation (34) about At ~ 0. As a
consequence, we have

. ft+ A —1(1)
m—r =7

f(t) - AI;»O At

= lim (—u(2) (1 + A1)
= —u(t) f(r)
and

At) —
i(r) = Alimo m(f + Att) m(?)
—

lim (—u(r) m(1 + A1) —& f(t + A1)

The reader may verify that these results are exactly the
same as equation (24). Equation (26) then follows from the
linear relationship between stress and strain, which—for a
Kirchhoff elastic rod—requires that

m(t) = diag (cy, c2, ¢3) u(f)

for some ¢y, ¢y, c3 > 0.

It is now clear that A is a space of moments and forces,
and in particular that ©(0) = a € A represents the moment
m(0) and force f(0) at the base of a Kirchhoff elastic rod.
We note that abnormal (g, u), generated by a € R\ A, are
exactly those configurations of the rod at which m(0) and
f(0) are indeterminate. This interpretation is entirely classi-
cal (Antman, 2005)—the reader may compare it to the usual
relationship between generalized forces and Lagrange mul-
tipliers. We will use this interpretation in Section 6 to justify
our choice of sampling strategy for manipulation planning.

Before proceeding, we also note that the curvature x and
torsion t of the curve that is traced by the elastic rod are
given by

K2=M§+IJ«§

_— <M2M5+M3M6)
— Ml =\ 5 5 >
13+ 13
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in the special case ¢; = ¢; = ¢3 = 1 (see Biggs et al.

(2007)). It is easy to verify that

2% 13 = 2c(T — 1) = Mk
: ( 1) 2 (36)
K (T—)\.])Z)\.}

and equations (24)—(26) are equivalent, where

_m(0)
)

ha = 1(0) +2144(0) —

M:mﬁ@@-%@)

Al

1(0)?

are constants of integration. In this way, we recover the vari-
ational constraints in equation (36) that would have been
produced by analysis of equation (23) from a Lagrangian
perspective (Shi and Hearst, 1994; Langer and Singer,
1996; Shi et al., 1998).

5.5. Straight-line paths in A and B

In this section, we show how to compute “straight-line
paths” in both the chart A that we have derived and the
space B of boundary conditions. We will use these paths
as alternative local connection strategies in the sampling-
based planning algorithm of Section 6.

A-Connected Let agar, Agoat € Astable. We say that dgr
and agoq are A-connected if

Astart +§ (agoal - astart) € Astable

for s € [0, 1]. It is equivalent to say that @ and @gea are
connected by a straight-line path in Aggple.

B-Connected Let

bstart = P o \U|Astablc(astart)
bgoal =®o \I’|.Astable(agoal)

for SOme Gytart, dgoal € Astable- Define R € SO(3) and v € R?

so that
R v _
[0 1] = bsta}rtbgoal'

Define exponential coordinates w € R? and 0 € [0, ) for R
in the usual way (Murray et al., 1994), taking w = 0 when
R = 1. Define 8: [0,1] — B by

IB(S) = bgtart [exp %S'WQ) SIV] .

Assume that (s) € Bguple for all s € [0, 1]. Recall from
Theorem 8 that

Do W[y ¢ Astable = Bstable

stable

is a local diffeomorphism with non-singular Jacobian
matrix J(1). This matrix, of course, depends on the argu-
ment a € Ag.ple. In what follows, we make this dependence
explicit by writing J,(1). Let @ : [0, 1] — A be the solution

to
& @ [WQ] (37)

v

with initial condition «(0) = a@ri. We know that this solu-
tion exists and is unique because, again, ® o V|4, isa
local diffeomorphism. By construction, we also have

B(s)= P o W], ©als)

fors € [0, 1]. Note that, because ® o W| 4. is only a local
diffeomorphism, this result does not necessarily imply that
a(1) = agoai. We say that agr and agoqr are B-connected if
indeed a(1) = agoq and if our assumption that S(s) € Baple
for s € [0, 1] was correct.

6. Manipulation of an elastic rod

It is now clear how to do quasi-static manipulation planning
for a Kirchhoff elastic rod. Recall that we want to find a path
of the gripper that causes the rod to move between given
start and goal configurations while remaining in static equi-
librium. As pointed out by Lamiraux and Kavraki (2001), it
is equivalent to find a path of the rod through its set of equi-
librium configurations. What makes this problem seem hard
is the apparent lack of coordinates to describe these equilib-
rium configurations. Section 5 has given us the coordinates
that we need.

In particular, we have seen that any equilibrium configu-
ration can be represented by a point in Aggpe C A C RO.
It is correct to think of A as the “configuration space” of
the rod during quasi-static manipulation and of Aggple as
the “free space”. Theorems 5-6 say how to map points in
A to configurations of the rod. Theorem 7 says how to test
membership in Aggpie, 1.€. it provides a “collision checker”.
Theorem 8 says that paths in Agpe can be “implemented”
by the gripper, by establishing a well-defined map between
differential changes in the rod (represented by Agple) and
in the gripper (represented by Bgaple)-

In other words, we have expressed the quasi-static manip-
ulation planning problem for a Kirchhoff elastic rod as a
standard motion planning problem in a configuration space
of dimension six, for which there are hundreds of possible
solution approaches (Latombe, 1991; Choset et al., 2005;
LaValle, 20006).

In Section 6.1, we describe a sampling-based planning
algorithm that is easy to implement. In Section 6.2, we
compare this algorithm to what was suggested by the
representative work of Moll and Kavraki (2006).

6.1. Sampling-based planning algorithm

Here is one way to implement a sampling-based algorithm
like the Probabilistic Roadmap Method (PRM) (Kavraki
et al., 1996) for quasi-static manipulation planning:
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e Sample points uniformly at random in

[a € A: |a;| < My fori =1,2,3 and |a;]

ffmax fOr l = 49 596}7

where M.y 1S an upper bound on allowable moments
(ai,az,a3) and finax is an upper bound on allowable
forces (a4, as, ag) at the base of the rod (see Section 5.4).

e Add each point ¢ as a node to the roadmap if the
function FREECONF( ) returns TRUE (see Figure 6,
which summarizes the computations derived in Sections
5.1-5.3 to test that a € Agapie)-

e Add an edge between each pair of nodes a and & if
they are A-connected (see Section 5.5). This test can be
approximated in the usual way by sampling points along
the straight-line path from a to @’ at some resolution,
evaluating FREECONF at each point.

o Declare dari, Agoal € Astable t0 be path-connected if they
are connected by a sequence of nodes and edges in the
roadmap. This sequence is a continuous and piecewise-
smooth map

o [0> 1] e Astable;

where o(0) = atare and (1) = agoal.
e Move the robotic gripper along the path

B:10,1] = Bitabie

defined by

B(s)= P o W], oals)

for s € [0,1]. This path is also continuous and
piecewise-smooth. It can be found by evaluating
FREECONF( «(s)), which gives us B(s) as a byproduct
of checking that a(s) € Agaple.

Each step is trivial with modern numerical methods. It
is also easy to include other constraints within this basic
framework. For example, the function FREECONF(a) in
Figure 6, that we use in our own implementation, checks
both that a € Agyple and also that the configuration (g, u) =
W(a) does not place the rod in (self-)collision. The first
check is based on event location in ordinary differential
equations (Shampine and Thompson, 2000) and the second
check is based on bounding volume hierarchies (Gottschalk
et al,, 1996), modified as in Agarwal et al. (2004) for
deformable linear objects.

6.2. Analysis and experimental results

The overall structure of the planning algorithm in Section
6.1 is exactly as suggested by Moll and Kavraki (2006). The
key difference here is the choice of sampling and local con-
nection strategies, and particularly the choice of space in
which to implement these strategies. Instead of computing
samples and straight-line paths in 3 (boundary conditions),

we compute them in A (equilibrium configurations), some-
thing we can do only because of the analysis provided in
Section 5.

One advantage of this choice is that points in .4 uniquely
specify equilibrium configurations of the rod, which can
be computed by evaluating FREECONF. Points in B do not
uniquely specify equilibrium configurations, which in this
case depend on ag,,¢ and on the entire path

B:0,1] — B

taken by the gripper, and must be computed by solving a
differential equation similar to equation (37). Indeed, we
emphasize that “start” and “goal” for manipulation plan-
ning must be points in Agupe, or equivalently points in
Cstable through the diffeomorphism W. It is insufficient to
specify start and goal by points in Bygpe. We note fur-
ther that planning heuristics like lazy collision-checking
(Sanchez and Latombe, 2002)—which bring huge speed-
ups in practice—are easy to apply when planning in .4 but
hard to apply when planning in .

A second advantage of our choice to work in A is that
straight-line paths in A are uniformly more likely to be fea-
sible (as a function of distance) than straight-line paths in 5.
Before presenting empirical results that justify this claim,
we will discuss why it might be true.

Consider the example of quasi-static manipulation
that is shown in Figure 1. In this case, agart and ageq are
A-connected, and so the algorithm in Section 6.1 produces a
single straight-line path in Agpie. This path is implemented
by moving the gripper along the path

B:[0,11— B
in Bgaple, Where

B(s)= P o W], oals)

and

Ol(S) = Qgtart + (agoal - astart)
for s € [0, 1]. Consider what would have happened if we
had tried to plan a path from agar t0 @goal by Working in the
task space B rather than in the space A of equilibrium con-
figurations. Clearly, the resulting plan cannot be represented
by a single straight line in B. We have

bstart = P o qj'-/“stablc( Astar) = P 0 ‘"I'[|Astablc( agoal) = bgoal

in this case, so equation (37) results in zero motion—
i.e. asart and agea are not B-connected. In the language
of sampling-based planning (Kavraki et al., 1996; Choset
et al., 2005; LaValle, 2006), we say that ag, is visible
from ag,,« when using a straight-line local connection strat-
egy in A, but is not visible when using the analogous
strategy in B.
We can generalize this example as follows:

Lemma 6. Ifa,d € Agape are B-connected and a # d,
then

o \II'Astable(a) # ®o ‘IJlAstable(a,) :
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a€ A= {a € RS: (af2va37a57046) 7é (0,0,0,0)}
be B=SE(@3)
solve define b = ¢(1)
fu = c3 pspe — 3 tpaps
X ol 1 solve
H2 = H6 T Cp H1M3 — C3 H3H1
. . 1 ’ 1 0 —p3fes  p2fcz 1
f13 = —ps5 +Cy T pop1 — ¢y p1p2 i=gq us/cs 0 —p1fer 0
. -1 -1 T —pa/e c 0 0
—c f ¢ M p2fc2 /el
/:L4 illiSﬂ.) g_lﬂQ,U«G ; 0 0 0 0 L1
5 = C 5 — ¢ 3
b 1_1#1l46 ‘zludwl with initial condition
ft6 = Cy  H2ft4 —C] 1[5
. - 9(0) =1
with initial condition
on the domain ¢ € [0,1]
wo)=a
on the domain ¢ € [0,1]
solve ) )
M =FM J=GM+HJ
with initial condition
M(0) = I J(0)=0
on the domain ¢ € [0, 1], where
i 10 ) psezt —cxh) /,Lg(c;i _C;i) 0 0 0
;43(c1_1 — 03_1) 10 ) pi(ey” —c3) 0 0 1
I L - ) 0 0 -1 0
0 —pe/c2 us/c3 0 usfcs  —p2/c2
He/c1 0 —pa/cs —p3/cs 0 /el
L —ws/a pa/ecz 0 p2fez —pi/cr 0
G = diag (7', ¢5",¢51,0,0,0)
r 0 psfes  —pa/cs 0 0 0
_#3/03 0 [1,1/01 0 0 0
H= | #2/c2 —m/a 0 0 0 0
0 0 0 0 pu3fez  —p2/ce
0 0 1 —u3/cs 0 ui/ec
L 0 -1 0 p2/ca  —m/ca 0
IE !

use event location to find teon; € (0,1]
at which det(J(tconj)) = 0 and output
TRUE if none exists, FALSE otherwise

use bounding volume hierarchies to find
a point of (self-)collision and output
TRUE if none exists, FALSE otherwise

FREECONF(a) € {TRUE, FALSE}

Fig. 6. Summary of computations required to check that a single configuration of the elastic rod, represented in coordinates by a point
a € A C R, is both stable and collision-free. We also produce the corresponding gripper placement b € 3. The constants ¢y, ¢3,¢3 > 0

are assumed to be given.

Proof. Assume to the contrary that
b=do \Ilestable(a): ®o \IJ|-Astab]e(a/) = b/'

Then, the straight-line path from 5 to b’ results in
zero motion, so we must have had a a’, which is a
contradiction. O

As a corollary, we can prove an even stronger result:

Lemma 7. Let a,d'd” € Agupie. Assume that a # a' and
that
/
(b © lIl|-’4stable(a) = CD © \L,'Astable(a ) :

If a and d" are B-connected, then a' and da' are not
B-connected.

Proof. First, consider the case @ = a”. We have @’ # a”
by assumption, so Lemma 6 implies that ¢’ and a” are
not B-connected. Now, consider the case a # a”. Define
Agary = a”. Since ® o W[y (a)= ® o W4, (a), the
path «: [0, 1] — A produced by equation (37) is the same
regardless of whether agoa = @ Or agea = a'. In partic-
ular, since both a # « and «(1)= a by assumption, we
must have a(1)# . So, by definition, ¢’ and a” are not
B-connected. O

Lemma 7 implies that no fewer than three “straight-line
paths” in Byl are required to connect two different equi-
librium configurations that share the same boundary con-
ditions. No such restriction exists on connections made
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Fig. 7. Probability of successful local connection between randomly sampled points a, @’ € Ag,pe using straight-line paths in A (blue
circles) and in B (orange triangles) as a function of distance measured in A (left), B (center), and U (right). A histogram shows the
induced distribution after 30,000 samples over each measure of distance.

in Agaple, strongly suggesting that Ag.pe has favorable
visibility properties (in general) compared to Bgapie.

Figure 7 shows experimental results that support this
claim. In each case, 30,000 pairs of points a,d’ € Aspie
were generated by sampling uniformly at random in

{ae A: |a;] <2m fori=1,2,3 and |a;]|
< 100 fori = 4,5, 6}

and rejecting points that were not in Agpe. We tested
whether each pair of points was A-connected and B-
connected (as in Section 5.5), including self-collision as
well as stability constraints. We computed the probability
that each type of connection was successful as a function of
three distance measures:

V(@ — a)T (a' — a).
VOZ2 Ty,

where w, 6, and v are the exponential coordinates
describing

e Distance in A:

e Distance in B:

bilb, = ((b © lIl|-’45mble(a))71 ((1) © \Il|-'4stable(a,)) ’

as defined in Section 5.5.
e Distancein U:

1

5/(;1 (u’—u)r(u’—u)dt,

where (¢, u) = V(a) and (¢, u') = ¥ (d') are as defined
in Section 5.2.

Figure 7 shows that .A-connection was uniformly more
likely to be successful as a function of distance than B-
connection. This result held for all three measures of
distance (in A, B, and U).

Figure 8 shows one more example of quasi-static manip-
ulation to emphasize the consequences of this result. In this

example, the rod moves through a sequence of six different
equilibrium configurations that all share the same bound-
ary conditions. In other words, each of the configurations
shown in frames (a), (e), (i), (m), (@), and (u) is a differ-
ent local optimum of equation (23) for the same gripper
placement b € 3. Remarkably, the motion between each
consecutive pair of these local optima is a single straight-
line path in Agype. So in total, the motion in Figure 8 can
be represented by five straight-line paths in the chart that
we derived. Lemma 7 implies that—at minimum—fifteen
straight-line paths in Bgy,pe would have been required to
move through this same sequence of equilibrium configu-
rations. The empirical results in Figure 7 suggest that even
more would likely have been required.

Video of the examples in Figures 1 and 8 are included in
Extension 1.

7. Conclusion

Our contribution in this paper was to show that the set
of equilibrium configurations for a Kirchhoff elastic rod
held by a robotic gripper is a smooth manifold of finite
dimension that can be parameterized by a single (global)
coordinate chart. The fact that we ended up with a finite-
dimensional smooth manifold is something that might have
been guessed in hindsight (its dimension—six—is intuitive
given that the gripper moves in SE( 3)), but the fact that this
manifold admitted a global chart is something that we find
remarkable. Our results led to a simple algorithm for manip-
ulation planning, which at the outset had seemed very hard
to solve.

Although we call our algorithm “simple”, an effi-
cient implementation of this algorithm requires consider-
ation of certain details that remain to be addressed. For
example, to verify static equilibrium, Theorem 7 (also see
Figure 6) requires a check that det( J(z)) does not vanish
on (0, 1]. Currently, we approximate this check by using
a method of event location in ordinary differential equa-
tions, as described by Shampine and Thompson (2000) and
implemented by ode45 in MATLAB. We could also have
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Fig. 8. Another example of quasi-static manipulation by robotic grippers (blue) of an elastic rod (orange), in which we are exploring
a zoo of equilibrium configurations—shown in frames (a), (e), (i), (m), (q), and (u)—that all share the same boundary conditions.
Remarkably, each row corresponds to a straight-line path in the global coordinate chart A that we derived.

approximated this check by sampling ¢ at some fixed reso-
lution. Neither approach is guaranteed to produce a correct
result, and both approaches suffer from the classic tradeoff
between resolution (hence, computation time) and accuracy.
We would much prefer to implement an adaptive or “exact”
approach, as suggested—for example—by Schwarzer et al.
(2005). Doing so is problematic, however, since det( J(¢))
and all its derivatives vanish at r = 0. Along similar lines,
the computation of both J and ¢ requires the integration of
linear, time-varying, matrix differential equations. Again,
we have done so simply by using ode45 in MATLAB,
with a sufficiently low error tolerance. Ignoring the obvi-
ous structure in equations (25) and (33) makes our current
implementation highly inefficient. The use of variational

integrators (West, 2004) would be a straightforward way to
improve performance.

There are several other opportunities for future work.
First, the coordinates we derive can be interpreted as forces
and torques at the base of the elastic rod, so A is exactly the
space over which to perform inference in state estimation
with a force/torque sensor. Second, our model of an elas-
tic rod depends on three physical parameters ¢y, ¢z, c3 > 0.
Finding these parameters from observations of equilibrium
configurations can be cast as an inverse optimal control
problem (Javdani et al., 2011). The structure established
by Theorem 6 allows us to define a notion of orthogo-
nal distance between C and these observations, similar to
Keshavarz et al. (2011), and may lead to an efficient method
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of solution. Third, we note that an elastic inextensible strip
(or “ribbon”) is a developable surface whose shape can be
reconstructed from its centerline (Starostin and van der Hei-
jden, 2008). This centerline conforms to a similar model as
the elastic rod and is likely amenable to similar analysis,
which may generalize to models of other developable sur-
faces. Finally, it may be possible to generalize our approach
to deal with other applied forces. The consideration of
gravity—as the gradient of a potential—should be straight-
forward, although it complicates our approach to Lie—
Poisson reduction. The consideration of other forces arising
from interaction between different parts of the elastic rod
(e.g. self-collision) is apparently much harder.
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Notes

1. This model is slightly different from the one we describe in
Section 5—for a discussion of the relationship between these
two models, see Biggs et al. (2007).

2. The smooth topology is also called the C*° topology and the
Whitney topology in the literature (Hirsch, 1976).
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at www.ijrr.org

Table of Multimedia Extensions

Extension Media Type  Description

Video Five

examples of quasi-static

manipulation. This video shows
five examples of quasistatic manip-
ulation. The first three examples

should

clarify the difference

between a “straight-line path” in
the space of boundary conditions
and in the global coordinate chart
that we derive in the paper. The
last two examples correspond to
Figures 1 and 8 in the paper.
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