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Abstract—1In this paper, we suggest a new way to plan
coverage paths for a mobile robot whose position and velocity
are subject to bounded error. Most prior approaches assume a
probabilistic model of uncertainty and maximize the expected
value of covered area. We assume a worst-case model of
uncertainty and—for a particular choice of coverage path—
are still able to guarantee complete coverage. We begin by
considering the special case in which the region to be covered
is a single point. The machinery we develop to express and
solve this problem immediately extends to guarantee coverage
of a small subset in the workspace. Finally, we use this subset
as a sort of virtual coverage implement, achieving complete
coverage of the entire workspace by tiling copies of the subset
along boustrophedon paths.

[. INTRODUCTION

In robotics, the coverage problem is to determine a motion
strategy for a robot equipped with a coverage implement,
such that the area swept out by the coverage implement in-
cludes the entire area to be covered [1]. Familiar applications
include lawn mowing [2], de-mining [3], and painting [4].

In the ideal case, when there is no uncertainty in the
robot’s state, the coverage problem can be framed as a
classical path planning problem, and complete and correct al-
gorithms exist for computing coverage paths. Typically these
paths comprise some variation of a raster scan (e.g., the bous-
trophedon algorithm [5]). In simply connected environments,
such a path can be applied directly; in multiply connected
environments, cell decomposition techniques can be used to
partition the environment into simply connected cells, each
of which can be covered using a raster scan path [6]. These
methods apply equally well in unstructured environments,
provided that sensors can robustly detect critical points in
the environment [3].

For cases in which uncertainty cannot be neglected, most
approaches to coverage resort to randomized algorithms,
framing the problem as one of probabilistic coverage. Since
such approaches cannot guarantee complete coverage in
finite time, they typically attempt to maximize the expected
value of the area covered [7], [8], or, in the case of probabilis-
tic search (which can be framed as a coverage problem), to
minimize the expected value of time required to cover some
target area [9]-[12].

In this paper, we consider the problem of constructing
guaranteed coverage paths when the robot is subject to
uncertainty in both its position and its instantaneous velocity.
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For this problem, neither the complete algorithms for cover-
age without uncertainty nor the randomized algorithms for
coverage under uncertainty are applicable.

More formally, the problem we confront is as follows.
A robot is equipped with a circular coverage implement of
radius 7. At any time ¢, the robot’s position is known only to
lie in an uncertainty ball of constant radius «, and its velocity
is subject to an arbitrary error whose magnitude is bounded
by a constant 3. This model of uncertainty is applicable, for
example, to robots equipped with GPS, and it has a long
history in the robotics community, dating back to early work
in motion planning under uncertainty [13]-[17]. Under these
conditions, our problem is to construct a coverage path p(t)
such that every point in a workspace W is guaranteed to be
covered in finite time.

We begin in Section II by considering the special case
of covering a single point in the workspace. Using concepts
from pursuit-evasion games, we formalize the problem in
terms of minimum time to capture of an evader, who plays
the role of nature in perturbing the position and velocity of
the robot. We determine sufficient conditions for coverage in
terms of «, # and ~, and provide a corresponding guaranteed
coverage path. In Section III we extend this approach to
the case of covering a small area W, by constructing a
conservative bound on an area guaranteed to be covered
by the path from Section II. We then treat W as a virtual
coverage implement, and construct a guaranteed coverage
path for the entire workspace by applying the boustrophedon
algorithm (Section IV).

II. COVERAGE OF A POINT
A. vy-Coverage

Let us begin by considering the simple case in which we
want a moving disk to cover a single point that is located at
the origin of a planar workspace. As usual, what we mean
by “cover” is that the origin is contained in the region swept
out by the disk as it moves. Suppose that the center of the
disk follows a trajectory p: [0,00) — R? that satisfies

p(t) = u(t) (1)

for some piecewise-continuous input u: [0,00) — R? and
all t € [0,00). Suppose also that

Ju(®)ll <1 2)

for all ¢ € [0,00), so the disk moves at no more than unit
speed. Finally, suppose that the disk has radius v > 0. Then,
we say that the origin is ~y-covered by p if there exists some
time ¢ € [0, 00) at which

)] <, 3)
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where ||-|| is Euclidean distance. Equivalently, the origin is
~-covered by p if the minimum such time

inf {t € [0,00): [[p(t)]| <~}

is finite. Note our use of “y-covered” rather than “covered”
in order to emphasize dependence on the choice of radius .

B. («, 8,7)-Coverage

Now, suppose that the center of the moving disk does not
exactly follow the trajectory p. We would like to know if the
origin remains ~y-covered.

To answer this question, we begin by defining a class of
admissible perturbations. Choose «, 5 > 0 and denote by £
the set of all absolutely continuous functions e: [0, 00) — R?
that satisfy

é(t) = v(t), @I <8 @

for some piecewise-continuous function v: [0, c0) — R? and
all t € [0, 00). For fixed p, we assume that it is possible for
the center of the disk to follow any trajectory of the form
p — e for some e € £. Think of p as the desired trajectory
and of e as the error that would result from tracking this
trajectory with a mobile robot—i.e., the error due to model
uncertainty, sensor and actuator noise, etc. The parameters
« and 3 establish worst-case bounds on the “position error”
e(t) and “velocity error” v(t), respectively.

For fixed e € &, the origin is y-covered by p — e if there
exists some time ¢ € [0, 00) at which

[p(t) —e(®)] <. 5)

Equivalently, the origin is y-covered by p—e if the minimum
such time

le@)] < a,

r(p,e) = inf {t € [0,00): [[p(t) —e(®)|| <~}
is finite. We say that the origin is («, 3,7)-covered by p if
R(p) = sup{k(p,e): e € £} (6)

is finite, i.e., if the origin is y-covered by p — e even for the
worst-case choice of error e. Again, our use of “(a, 83,7)-
covered” rather than “covered” emphasizes dependence on
the choice of bounds « and 8 and of radius ~.

It is clear that («, 3, y)-coverage can be interpreted as the
outcome of a pursuit-evasion game, in this case a so-called
game against nature. Indeed, our use of the notation p and e
is meant to evoke “pursuer” and “‘evader.” The pursuer wins if
p(t) and e(t) are ever closer than v, i.e., if k(p, e) < oo. The
evader wins if this event never occurs, i.e., if K(p,e) = co.
An optimal choice of strategy for the (omniscient) evader is
a trajectory e that maximizes the time to capture, i.e. that
achieves the supremum Z(p) in Equation (6). An optimal
choice of strategy for the pursuer is evidently a trajectory
p that minimizes the (worst-case) time to capture, i.e., that
achieves the infimum

f. = inf {K(p): p € P}, (7)

where P is the set of all absolutely continuous functions
p: [0,00) — R? that satisfy (1)-(2) for some piecewise-
continuous function u: [0,00) — R? and all t € [0, 00).
Equation (7) is, in fact, a complete description of what
we might call the “optimal (c,[3,~)-coverage planning
problem”—computing <. is equivalent to finding the trajec-
tory p that («, 3, y)-covers the origin in minimum time.

For now, we are interested only in finding some trajectory
p that (a, 3, )-covers the origin, not in finding a trajectory
that does so in minimum time. Before proceeding, we will
establish an equivalent definition of («, 3,~)-coverage that
is more useful for this purpose. For any ¢ € [0, c0), let

E(t,p) = {e(t) e R*: e € € and k(p,e) > t}.

Notice that E(t,p) is the forward reachable set of (4) at
time ¢ from any initial condition e(0) € R?, subject to the
constraint that ||p(s) — e(s)|| > « for all s € [0,¢]. It is clear
that the origin is («, 3,7)-covered by p if and only if there
exists some time ¢ € [0,00) at which E(¢,p) = 0. We will
see in the following section that, for certain choices of p, it
is easy to compute the reachable set E(t,p), hence to verify
that p achieves («, 8, v)-coverage.

C. Verification of («, B,v)-Coverage for 5 =0

In this section, we will show that the origin is (a, 8,7)-
covered by a particular choice of trajectory p in the special
case for which 8 = 0. This trajectory will be a sequence of
switchbacks (i.e., it will be a Boustrophedon path). A similar
trajectory will also suffice in the general case 8 > 0, as we
will show in the sequel (Section II-D).

By assuming that 5 = 0, we are assuming that the only
uncertainty in following p is in the initial error e(0). To
verify that the origin is («, 3, y)-covered by p, we need only
verify that p passes within a distance v of all e(0) € R?
satisfying ||e(0)|| < «a. This objective is exactly what we
would encounter in a “standard” coverage problem (without
uncertainty), in which the region to be covered is a disk of
radius a. A common way to solve this problem is with a
Boustrophedon path, in other words with a path that is a
sequence of straight-line switchbacks [5]. Figure 1(a) shows
a trajectory p of exactly this type. It is constructed starting
from the initial condition

R

for some § € (—+,) by repeated application of

(1,0)  kr<t<kr+{(

u(t) = 0,1) - <t<kr+(+h
(~1,0) - <t<kr+20+h
0,1) - <t<kr+20+2h

for k € {0,1,2,...} and 7 = 2¢ + 2h, where

L=2(a+7) h=2y—c¢

and the parameter ¢ € (0,2v) is arbitrarily small. It is easy
to compute the forward reachable set E(t, p) for this choice
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The switchback plan to cover a point when (o = 1,8 = 0,y = 3/8). The parameters § € (—,~) and ¢ € (0,2v) can be chosen arbitrarily.

(®)

Fig. 2. The switchback plan to cover a point when (« = 1,8 = 1/10,~ = 3/8). The parameters § € (—~,~) and € € (0,2v) can be chosen arbitrarily.

of p. In fact, we can describe this set explicitly as

E(t,p) = (LUR)N A,

where
L={z€R?: 2 <p(t) and 22 > po(t) +7} ®
R= {26R2: z1 > p1(t) and 29 Zpg(t)—7+e}
when ¢ € [kT, kT + £+ h),
L={z€R? 2 <pi(t) and 2o > pa(t) — v+ €} ©
R={z€R*: z >pi(t) and z5 > po(t) + 7}
when t € [kt + ¢+ h,(k+1)7), and
A={2€eR* |z]|<aand |p(t)—z| > v} (10)

in either case. Figure 1(b) shows a snapshot of E(t,p) at

one particular time ¢ € [07 + ¢ + h, (0 4 1)7]. Notice that
Ay = pa((k+1)7) — p2(k7)
=2h
= 2(2’7 - 6)7
so after each interval [k, (k + 1)7] the boundary of E(t,p)

moves “up” a distance 2(2v — ¢€). In particular, it is easy to
verify that E(t,p) = () for all

t> [2(a+7)/Ay]T, (11)

where [-] is the ceiling operator that rounds up to the nearest
integer (note that (11) is a conservative bound). We conclude
that the origin is («, 3, 7)-covered by p.

D. Verification of («, 8,y)-Coverage for 5 >0

We have seen that a Boustrophedon path suffices to
achieve («, f3,v)-coverage of the origin when 5 = 0. We
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might guess that a similar path would achieve (a,(,7)-
coverage when 5 > 0 is non-zero but still small. In particular,
consider again the example shown in Figure 1(b). With g =
0, the two straight-line edges that form the lower boundary of
E(t,p) remain motionless. If instead 8 > 0, these two edges
would move downward—in the outward normal direction—
at speed . Evidently, the trajectory p should also move
downward at the same rate—in other words, p should be a
sequence of switchbacks that slant slightly backward along
each pass. Figure 2(a) shows a trajectory p of exactly this
type. It is constructed starting from the initial condition

_ |7
p(0) = [—a + 5}
for some § € (—+,) by repeated application of

(V1-=p2%-p)

kr<t<kr+/¢

0 (0,1) o <t<kr4+Ll+h
u =
(—/1—B2,—B) - <t<kr+20+h
(0,1) <t <kT+2(0+h)

for k € {0,1,2,...} and 7 = 2(¢{ + h), where
(=2a+)/VI—F  h=@y—/(1+f)

and the parameter € € (0, 2+) is arbitrarily small. It is easy to
verify that, for this choice of trajectory, the forward reachable
set evolves as shown in Figure 3. By extension, we can in
fact verify that

E(t,p) € (LUR)N A,

where L, R, and A are exactly as given before in (8)-(10).
Figure 2(b) shows a snapshot of E(t,p) at one particular
time ¢ € [17 + ¢+ h, (1 + 1)7]. Notice that

Ay £ pa((k+ 1)7) — pa(k7)
2(27625((”7)) (12)

1+ 4 /1— 32
so after each interval [k7, (k 4 1)7] the boundary of E(t,p)

moves “up” a distance Ay. So long as Ay > 0, it is easy to
verify that E(t,p) = () for all

t>[2(a+7)/Ay] T

Note that (13) is a conservative bound, as was (11). We
conclude that the origin is («, 3, ~)-covered by p if Ay > 0.

(13)

E. Asymptotics of («, 3,7)-Coverage

We have seen that a “backtracking” Boustrophedon path
(Figure 2) suffices to achieve («, 3, 7)-coverage of the origin
in the general case S > 0, so long as the quantity Ay in
Equation (12) is positive. It is instructive to enumerate the
values of «, (8, and ~ that would produce Ay > 0.

First, notice that Ay > 0 if and only if

Y (VI=F =B+ 8)) (V1= F +aB(1+8)) >0,
which cannot possibly be true unless

f(B) £ V/1—p2=pB(1+8)>0. (14)

(a) Velocity of points on the free boundary of the forward reachable set
E(t,p). Each point moves in the outward normal direction. Points along
Bi1Bg and B4Bs move at speed 3. Points a distance s along the arc
from Bj to Bz move at speed sin(s/) for s € [0,ysin™1(3)].

E(t + At, p)

e e an

-»»-""‘ﬁ(t;F’A't)”fﬂ(t) ””””””

(b) The new forward reachable set E(t+At, p) after a time step At > 0.
Fig. 3. Evolution of E(t,p) when p(t) = u(t) = (/1 — B2, —p).

The function f in Equation (14) is monotonic decreasing
for 5 € [0,1), and has a zero crossing at 8 =~ 0.54. As
a consequence, a necessary condition for (o, 3,~)-coverage
with our particular choice of p is that 5 € [0,0.54).
Second, notice that we can explicitly compute the sensi-
tivity of Ay to changes in the parameters «, /3, and ~:

0Ay 43

da V1-—p32
Ay __2< 2(a+7)
o ~ \- )

0Ay 4 1 Ié;

oy 1+ J1-82)
Figure 4 plots these partial derivatives. These results tell us
what changes in «, 3, and 7 produce the greatest increase

in Ay (i.e., the greatest decrease in the time required to
achieve (a, 3,7y)-coverage of the origin with a switchback

)
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Fig. 4. Sensitivity of Ay—a measure of forward progress, as in Equation
(12)—to differential changes in «, 3, and ~y for the switchback plan.

plan). In particular, they tell us that we get the most payoff
by decreasing (8 (i.e., by tightening our bound on worst-case
velocity error), and that there is a critical value of S = 0.35
that determines if it is better to decrease « or increase ~.

These asymptotic results have real design implications,
since the parameters «, (3, and -y derive from the choice of
sensors, actuators, and “implement size” (e.g., the size of the
cutting blade on an automated residential lawn mower). One
thing these results emphasize, for example, is the relative
importance of a tight bound on worst-case velocity error
(whereas we might a priori have assumed that worst-case
position error is most important).

III. COVERAGE OF A SET

In the previous section, we saw how to cover a single
point with a moving disk of radius -, despite perturbations
e that are characterized by worst-case bounds on position
error (|le(t)|| < «) and on velocity error (||é(t)|| < ). In
this section, we will see that exactly the same approach can
be used to cover a small subset of R? (not just a point). This
result will be our foundation for achieving robust coverage
of an entire workspace (Section IV).

A. From Points to Sets

As a direct extension of what appears in Section II-B, we
say that a set W C R? is (o, 3,7)-covered by a trajectory
p € P if every w € W is («, 8, )-covered by p. However, it
is not immediately clear how to verify (o, 3,y)-coverage in
this case, for arbitrary sets W. Our purpose in this section
is to establish a sufficient condition for (a, 3, y)-coverage
of a “small” set that is easy to verify, exactly as we did in
Section II-D for coverage of a single point.

We begin by restricting our attention to compact sets W C
R? that are radially symmetric about the origin, so that —w €
W for all we W. For any » > 0 and g € R2, define

B.(q) ={z € R?: |lg —z|| < r}

I ’7 1 A 1
Fig. 5. Construction of S, (W) when W is a square with side-length 1
that is centered at the origin.

and
S, (W)={zeR*: W C B,(2)}.

In particular, the set W is strictly contained in a disk of radius
« if this disk is centered at any point in S, (W'). Henceforth,
we will assume that S, (W) # (). In this case, a sufficient
condition for W to be («, 3, )-covered by p is clearly that
there exists some time ¢ € [0, c0) at which

p(t) —e(t) € Sy(W).

It is equivalent that

e(t) € p(t) @ S, (W),

where “@®” denotes Minkowski addition. Note that Equation
(5) in Section II-B could similarly have been written

e(t) € p(t) © By(0),

where 0 = (0,0) € R? denotes the origin. In particular,
we see that a sufficient condition for («, 3, )-coverage of
W by a disk B, (o) is (a, 3,7)-coverage of the origin by
S, (W). All of the machinery we developed in Section II
can immediately be applied to verify this condition.

5)

B. Verifying («, 8,7v)-Coverage of a Square
Suppose the set W to be covered is a square of side-length
1 that is centered at the origin:

W:{ZGRQ: |z1] < pand 2] < p}.

This set is both compact and radially symmetric. It is easy
to verify that S, (W) is the “diamond” shape of radius

No HE VA -
- 2

that is shown in Figure 5, and also that S, (W) # () when
w< 7\/5. Hence, W satisfies the assumptions we made in
Section III-A, and we are free to approach verification of
(a, B,)-coverage as in Section II.
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Fig. 6. Snapshot of the switchback plan to cover a square set W of side-
length o = 1/4 when (o = 1,8 =1/10,v = 3/8).

Fig. 7. Covering a workspace by tiling it with a sequence of squares, each
one of which is («, 3,)-covered by repeating the trajectory in Figure 6.

In particular, we consider exactly the same switchback
trajectory p that we defined in Section II-D, only replacing
“v” with “X\” wherever it appears. The forward reachable
set E(t,p) evolves exactly as before. Figure 6 shows a
snapshot of F(¢,p) at one particular time. We may compute
from Equations (12)-(13)—again, replacing “y” with “\”—
an upper bound on the first time ¢ € [0,00) at which
E(t,p) = (. We conclude, as before, that the set W is

(a, B,7)-covered by p.
IV. COVERAGE OF A WORKSPACE

In the previous two sections, we saw how to achieve
(a, B,7y)-coverage (i.e., “robust” coverage) of a point and
of a square. We did so using a trajectory p that consists
of a sequence of switchbacks, slanted slightly backward on
each pass (see Figures 2 and 6). An important property of
this trajectory—that we did not discuss before—is that p is
periodic. An immediate consequence is that, by repeating this
trajectory, we (a, 3,y)-cover not just one square but rather
an entire sequence of squares. We now have an approach
that allows us to cover a workspace of arbitrary shape—
tile the workspace with squares of side-length u, follow
a Boustrophedon path (as in [5]) through the tiling, and
cover each square by repeated application of our same basic
trajectory p (see Figure 7).

V. CONCLUSION

In this paper we showed one way to plan guaranteed cov-
erage paths for a mobile robot whose position and velocity
are subject to bounded error. Our algorithm is conservative,
in that we have made no attempt here to maximize the
rate of coverage. There are several obvious modifications
that would preserve the coverage guarantee, while improving
the coverage rate (e.g., interlacing the “raster lines” for the
paths in Section IV would likely lead to faster coverage in
most circumstances, while still providing the same worst-
case guarantee). And, of course, if « or 3 are decreased, or if
~ is increased, the paths we present here will achieve a faster
rate of coverage. To our knowledge, this work represents
the first guaranteed coverage results for the case of bounded
position and velocity error.
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