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Minimum-Time Optimal Control of Many Robots
that Move in the Same Direction at Different Speeds

Timothy Bretl, Member, IEEE

Abstract—In this paper, we solve the minimum-time optimal
control problem for a group of robots that can move at different
speeds but that must all move in the same direction. We are mo-
tivated to solve this problem because constraints of this sort are
common in micro-scale and nano-scale robotic systems. By appli-
cation of the minimum principle, we obtain necessary conditions
for optimality and use them to guess a candidate control policy. By
showing that the corresponding value function is a viscosity solu-
tion to the Hamilton–Jacobi–Bellman equation, we verify that our
guess is optimal. The complexity of finding this policy for arbitrary
initial conditions is only quasilinear in the number of robots, and
in fact is dominated by the computation of a planar convex hull.
We extend this result to consider obstacle avoidance by explicit
parameterization of all possible optimal control policies, and show
examples in simulation.

Index Terms—Motion planning, multi-robot systems, optimal
control.

I. INTRODUCTION

IN this paper, we will solve the minimum-time optimal con-
trol problem for a group of n robots that can move in a planar

workspace at different (although bounded) speeds, but that must
all move in the same direction. Fig. 1 shows an example result
for n = 3 robots that already hints at the beautiful geometric
nature of the solution to this problem. We will show that the tra-
jectory in this example is optimal, and that the algorithm applied
to generate it (see Fig. 2) is correct.

We are motivated to solve this problem because the operating
constraint is exactly the one exhibited by a particular micro-
robotic system, the “MagMite,” that was developed recently by
researchers at ETH-Zurich [1]–[6]. This system is controlled by
an external magnetic field. Rotating the field rotates the robot,
while oscillating the field drives the robot to resonance and pro-
pels it forward. Many robots can be driven at the same time
at different speeds, as long as each one has a different reso-
nant frequency. However, all robots must move in the same
direction.

Similar constraints, requiring that some control inputs be the
same for all robots, arise in many other micro/nano-scale sys-
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Fig. 1. (a) Minimum-time optimal trajectory for three robots with bounded
speed in a planar workspace, under the constraint that all robots move in the
same direction. (b) The same trajectory translated so each goal is at the origin,
showing its relationship to the convex hull of {z1 , z2 , z3 ,−z1 ,−z2 ,−z3}.

tems [7]. Specific examples include the untethered scratch-drive
actuator [8] and the “Mag-μBot” [9], [10], where the common
challenge is to somehow differentiate each robot’s response. The
standard way to deal with this challenge has been to decouple
robots through hardware modification. For example, the work
of [11], [12] uses electromechanical hysteresis to make par-
ticular scratch-drive actuators respond to some control inputs
but not to others. A similar approach is taken by [13], which
uses a structured electrostatic substrate to selectively immobi-
lize Mag-μBots. Our approach here is quite different, where we
ask what can be done with the appropriate choice of control
algorithm. It extends a line of thinking that began in our own
earlier work [14]–[16], and is most closely related to the notion
of “broadcast feedback” and stochastic recruitment control in
robotics [17], [18] and to ensemble control theory in applied
mathematics [19], [20].

The minimum-time optimal control problem that we will
solve is stated formally as follows:

minimize
∫ tf

0
dt

subject to
ẋi = vi

[
cos u
sinu

]

|vi | ≤ 1

⎫⎬
⎭ for i ∈ {1, . . . , n}

(1)

with boundary conditions

xi(0) = zi

xi(tf ) = 0

}
for i ∈ {1, . . . , n} (2)

and free final time tf , where the state is

x = (x1 , . . . , xn ) ∈ R
2 × · · · × R

2

and the inputs are u ∈ [−π, π) and

v = (v1 , . . . , vn ) ∈ R × · · · × R.
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Our assumption that xi(tf ) = 0 is for convenience. Trajecto-
ries of (1) are invariant under translation, so arbitrary boundary
conditions xi(0) = ai and xi(tf ) = bi are achieved by taking
zi = ai − bi . This model captures the key constraint on the
“MagMite” in [1]–[6] that makes control of this microrobotic
system hard, at least from an algorithmic point of view.

We will begin in the classical way by applying the minimum
principle of Pontryagin [21] to obtain necessary conditions for
optimality, and using these conditions to guess a candidate con-
trol policy (see Section II). To verify that our guess is opti-
mal, the usual next step would be establishing a regular synthe-
sis [22] or appealing to geometric arguments—for example, see
the seminal work to derive Dubins [23], Reeds-Shepp [24], or
Balkcom-Mason [25] curves for car-like vehicles. We will be
required instead to provide sufficient conditions by showing that
the value function corresponding to our candidate control policy
is a viscosity solution to the Hamilton-Jacobi-Bellman equation
(see Section III). In doing so, we follow an approach that has so
far been taken more often in control theory and applied math-
ematics [26], [27] than in robotics. We will apply the resulting
optimal control algorithm (see Fig. 2) to several examples in
simulation (see Section IV).

Beyond the intended application to a particular microrobotic
system, three aspects of our solution to the optimal control
problem (1)–(2) merit particular interest:

1) We will show that the time required to compute a solution
to (1)–(2) is only O(n log n), and in particular is domi-
nated by the computation of a planar convex hull. This
result is surprising, and suggests the existence of hidden
structure in planning and control problems for large groups
of micro/nano-scale robots (as well as for related systems
like the one considered in [16]) that may vastly simplify
these problems.

2) We will show that, in worst case, the solution to (1)–(2)
has cost

tf =
π

2

(
max

i∈{1,...,n}
‖zi‖

)
,

where ‖·‖ is the standard Euclidean distance metric. If
each robot was free to move in any direction, this cost
would instead be

tf = max
i∈{1,...,n}

‖zi‖ .

As a consequence, with respect to our model, the design
compromise that couples the movement direction of the
microrobots in [1]–[6] only makes these robots π/2 times
slower in worst case. This result is useful when deciding if
it is worth the effort to eliminate coupling through further
hardware modification.

3) We will show that the solution to (1)-(2) is not unique,
and in particular we will show how to explicitly construct
the space of all possible optimal trajectories. This space
is reminiscent of the “task-completion diagram” or “coor-
dination space” that has been used in multi-robot motion
planning [28]–[30]. It will allow us to consider obstacle

avoidance (including collisions between robots) while re-
taining a guarantee of optimality.

We will discuss the extent to which these results generalize,
and in particular the extent to which they can be applied to real
robots, in our concluding remarks (see Section V).

Finally, note that we studied a similar model of the same
robotic system [1]–[6] in our own previous work, presented
at a conference [31]. However, in that work, we considered a
different cost function and took a heuristic solution approach.

II. NECESSARY CONDITIONS

A. The Form of the Hamiltonian

Consider the minimum-time optimal control problem (1)–(2)
that was posed in Section I. We will abbreviate

û =
[

cos u
sinu

]

for any u ∈ [−π, π), so the dynamic model will be expressed as

ẋi = viû, for i ∈ {1, . . . , n}.

Since û = −û + π, we can restrict u ∈ [0, π) without loss of
generality. The Hamiltonian associated with (1) is

H(x, p, u, v) = 1 +
n∑

i=1

pT
i (viû) , (3)

where

p = (p1 , . . . , pn ) ∈ R
2 × · · · × R

2

is the costate. The minimum principle [21], [32] tells us that
along any optimal trajectory (x∗, p∗, u∗, v∗), we must have

−ṗ∗ = ∇xH(x∗, p∗, u∗, v∗) (4)

and

0 = H(p∗, x∗, u∗, v∗) (5a)

≤ min
u,v

H(p∗, x∗, u, v). (5b)

Since the Hamiltonian (3) has no dependence on the state, the
condition (4) implies that the costate is constant in time:

pi(t) = pi(0) ≡ pi, for i ∈ {1, . . . , n} .

Similarly, the condition (5) leads to the following result:
Lemma 1: The Hamiltonian (3) has the form

H(x, p, u, v) = 1 −
n∑

i=1

∣∣pT
i û
∣∣

along any optimal trajectory.
Proof: If pT

i û = 0, then vi

(
pT

i û
)

= 0. If pT
i û �= 0, then the

condition (5b) requires that

vi = −sign
(
pT

i û
)
.

Together, these two facts imply that

vi

(
pT

i û
)

= −
∣∣pT

i û
∣∣

for i ∈ {1, . . . , n} and u ∈ [0, π). Our result follows. �
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B. Minimizing the Hamiltonian

In the previous section, we showed that the Hamiltonian is
a function only of the heading angle u. In this section, we will
show that at least one and at most n values of u minimize the
Hamiltonian. We will immediately be able to conclude that u(t)
is piecewise-constant and takes on at most n values along any
optimal trajectory. Before proving our main result (see Lemma
3), we will require a key fact about the geometrical relationship
between pi and û at any minimizing angle u (see Lemma 2),
which itself is based on some results from real analysis that are
collected in the Appendix (see Lemmas 11-13).

Lemma 2: The Hamiltonian

H(u) = 1 −
n∑

i=1

∣∣pT
i û
∣∣ (6)

has no minimum at any u0 ∈ [0, π) satisfying both pi �= 0 and
pT

i û0 = 0 for some i ∈ {1, . . . , n}.
Proof: Assume to the contrary that such a u0 exists. Define

the index set

I =
{
i ∈ {1, . . . , n} : pT

i û0 = 0
}

and let J = {1, . . . , n} \ I.
First, we will show thatJ is non-empty. If we assume the con-

trary, then H(u0) = 1. The minimum principle requires that the
costate never vanish, i.e., that pk �= 0 for some k ∈ {1, . . . , n}. It
is always possible to choose u ∈ [0, π) such that û = pk/ ‖pk‖,
hence that

1 −
n∑

i=1

∣∣pT
i û
∣∣ = 1 − ‖pk‖ −

n∑
i = 1
i �= k

∣∣pT
i û
∣∣ < 1.

As a consequence, it must be the case that

min
u∈[−π ,π )

1 −
n∑

i=1

∣∣pT
i û
∣∣ < 1 = H(u0),

contradicting the assumption that u0 minimizes (6). So, we
conclude that J is non-empty, as desired.

Next, we note that

∑
i∈I

∣∣pT
i û
∣∣ =
∣∣∣∣∣
∑
i∈I

pT
i û

∣∣∣∣∣ .

This result follows immediately from the fact that for all i, j ∈ I
there exists some c ∈ R such that pi = cpj .

Finally, we define two functions

g(u) =
∑
i∈I

pT
i û and h(u) =

∑
i∈J

∣∣pT
i û
∣∣ ,

noting that both g and h are differentiable at u0 and that

g(u0) = 0,
dg

du
(u0) �= 0.

We can show (see the Appendix, Lemma 13) that f(u) =
|g(u)| + h(u) has no maximum at u0 , hence that H(u) =
1 − f(u) has no minimum at u0 , and so we have our result. �

Lemma 3: There are at least one and at most n points in [0, π)
at which the Hamiltonian

H(u) = 1 −
n∑

i=1

∣∣pT
i û
∣∣

is minimized.
Proof: First, since the function H is continuous and real-

valued, then it must have a minimum on the interval [0, π].
Since H is periodic in π, then it must have the same minimum
on [0, π), completing the first part of our proof.

Next, we define the index set

I = {i ∈ {1, . . . , n} : pi = 0}

and let J = {1, . . . , n} \ I. We know from Lemma 2 that
pT

i û �= 0 for all i ∈ J at any point u that minimizes H , and
that J is non-empty. As a consequence, we may write

H(u) = 1 −
∑
i∈J

∣∣pT
i û
∣∣

and note that H is differentiable at any such point, giving us the
following necessary condition:

0 =
dH

du
=
∑
i∈J

(
pT

i Rû
)

sign
(
pT

i û
)

=

(∑
i∈J

sign
(
pT

i û
)
pT

i R

)
û

= q(u)T û,

where we have defined the rotation matrix

R =
[

0 1
−1 0

]

and the parameter vector

q(u) =

(∑
i∈J

sign
(
pT

i û
)
pT

i R

)T

.

Denote the number of elements in J by m. Each term pT
i û has

exactly one zero crossing in [0, π) and both H and dH/du are
periodic in π, so q takes on at most m values in [0, π). At a
particular value of q, dH/du is a sinusoid with at most one zero
crossing in [0, π). Hence, dH/du has at most m zero crossings
in [0, π), and so H has at most m minima, where we note that
m ≤ n, as desired.

We may confirm that these are minima (rather than maxima)
by noting that

d2H

du2 =
∑
i∈J

∣∣pT
i û
∣∣ > 0

on intervals of constant q. �

C. Structure of an Optimal Trajectory

In the previous section, we showed that the heading angle
u takes on at most n distinct values along any optimal tra-
jectory. In this section, we will show that each value of u
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need be applied exactly once, i.e., that no “chattering” need
occur. In doing so, we will have transformed (1)-(2) from an
infinite-dimensional problem, in which we are required to spec-
ify functions u(t) : [0, tf ] → [0, π) and vi : [0, tf ] → [−1, 1]
for i ∈ {1, . . . , n}, into a finite-dimensional problem, in which
we are required only to specify a sequence of n values of u.

Lemma 4: Given any solution to (1)-(2), we may construct
another solution of the form

u(t) = Uj

vi(t) = Vij

}
for

j−1∑
k=1

Tk ≤ t <

j∑
k=1

Tk .

for i ∈ {1, . . . , n}, where T ∈ R
m , U ∈ [0, π)m , and V ∈

[−1, 1]n×m , and where 1 ≤ m ≤ n. We denote this solution
by the tuple (T,U, V ) and say that it has m steps.

Proof: First, we note that u(t) is piecewise-constant, as an
immediate consequence of Lemma 3. In particular, we know
that u(t) takes on m values in [0, π), where 1 ≤ m ≤ n. Denote
these values by U1 , . . . , Um .

Next, given any solution to (1)-(2), we will show how to
construct another solution in which each input Uj is applied
exactly once, for a time interval of some length Tj . Consider
an arbitrary time interval [t0 , t1 ] ⊂ [0, tf ]. Define new inputs
u′(t) = u(r(t)) and v′

i(t) = vi(r(t)), where the function

r(t) =
{

t0 + t1 − t, if t ∈ [t0 , t1 ]
t, otherwise

simply reverses the flow of time on this interval. Then

x′
i(t1) − x′

i(t0) =
∫ t1

t0

v′
i(t)û′(t)dt

=
∫ t1

t0

vi(r(t)) ̂u(r(t))dt

=
∫ t1

t0

vi(s)û(s)ds

= xi(t1) − xi(t0).

Changing the order in which intervals of constant u(t) are
applied evidently leaves both tf and xi(tf ) invariant, so our
result follows.

Finally, we note that vi(t) for each i ∈ {1, . . . , n} can be
expressed in the required form, simply by replacing it with its
average value over intervals of constant u(t). In particular, for
each j ∈ {1, . . . , m}, we define

Vij =
1

t1 − t0

∫ t1

t0

vi(t)dt

where

t0 =
j−1∑
k=1

Tk , t1 =
j∑

k=1

Tk .

Then, the input

v′
i(t) = Vij , for

j−1∑
k=1

Tk ≤ t <

j∑
k=1

Tk

produces exactly the same result as vi(t). �

Note that the time cost of an m-step trajectory (T,U, V ) is
simply T1 + · · · + Tm . Note also that if pi �= 0, then we have

Vij = −sign
(
pT

i Ûj

)
.

If instead pi = 0, then the optimal choice of Vij is still unclear.
The next section will shed light on this question.

D. Invariance of the Optimal Trajectory

In the previous section, we showed that any optimal trajectory
is equivalent to one in which u(t) is piecewise-constant and takes
a sequence of m distinct values U1 , . . . , Um ∈ [0, π), where 1 ≤
m ≤ n. In this section we will suggest how to choose these m
values. We proceed by noting that this choice evidently depends
only on a subset of robots, in particular on each robot i with
which we must associate a non-zero costate pi �= 0. We will
characterize this subset, showing that pi �= 0 only if the initial
position zi is a vertex of the convex hull

conv ({z1 , . . . , zn ,−z1 , . . . ,−zn})
which you will recall from the example of Fig. 1. This result is
a consequence of Lemma 5, which will show that robots can be
added without changing the optimal trajectory as long as they
begin inside this convex hull. Our proof will be constructive,
and in fact will give an explicit formula for an optimal choice
of Vij , clearing up a question raised above. As a corollary,
Lemma 5 leaves us with a good guess at the optimal choice of
U1 , . . . , Um —namely, oriented along edges of the hull. We will
see in the following section that this guess is correct.

Lemma 5: Assume that (T,U, V ) is an m-step solution to the
optimal control problem (1)–(2) for n robots satisfying xi(0) =
zi for all i ∈ {1, . . . , n}. Let

zn+1 =
n∑

i=1

(ai − bi) zi

for any a1 , . . . , an ≥ 0 and b1 , . . . , bn ≥ 0 satisfying

1 =
n∑

i=1

(ai + bi) .

Then (T,U, V ′) is an m-step solution to (1)–(2) with exactly
the same cost for n + 1 robots, where xn+1(0) = zn+1 and

V ′
ij =

{
Vij , i ∈ {1, . . . , n}∑n

k=1 (ak − bk ) Vkj , i = n + 1.

Also, if p and (T,U, V ) satisfy the necessary conditions (4)-(5),
then so do p′ and (T,U, V ′), where

p′i =
{

pi, i ∈ {1, . . . , n}
0, i = n + 1.

Proof: It is clear that (T,U, V ′) steers the original n robots
to the origin with no increase in cost, and that the presence of
robot n + 1 cannot possibly decrease this cost. This trajectory
also steers robot n + 1 to the origin:

xn+1

⎛
⎝ m∑

j=1

Tj

⎞
⎠ = zn+1 +

m∑
j=1

TjV
′
n+1,j Ûj
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= zn+1 +
m∑

j=1

Tj

n∑
i=1

(ai − bi) Vij Ûj

= zn+1 +
n∑

i=1

(ai − bi)
m∑

j=1

TjVij Ûj

= zn+1 −
n∑

i=1

(ai − bi) zi

= 0.

Since each V ′
n+1,j is a convex combination of V1j , . . . , Vnj

and since |Vij | ≤ 1 for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
by assumption, then we must also have

∣∣V ′
n+1,j

∣∣ ≤ 1 for all
j ∈ {1, . . . ,m}. So, (T,U, V ′) is a solution to (1)–(2).

Finally, if we choose p′n+1 = 0, then we leave the Hamilto-
nian unchanged, so Lemma 1 implies that (4)–(5) are satisfied
by p′ and (T,U, V ′) just as they were by p and (T,U, V ). �

E. Candidate Solution Algorithm

The results of the previous section motivate the candidate
solution algorithm OPTIMALCONTROL shown in Fig. 2. This
algorithm takes the initial conditions z1 , . . . , zn as input, and
returns an η-step trajectory (T,U, V ), where 2η is equal to the
number of vertices in the convex hull

conv ({z1 , . . . , zn ,−z1 , . . . ,−zn}) .

The total cost of this trajectory is simply

tf = perim (conv ({z1 , . . . , zn ,−z1 , . . . ,−zn})) /4.

We will show (see Lemma 7) that this trajectory satisfies the
minimum principle for the problem (1)-(2). To do so, we will
begin with a preliminary result (Lemma 6) that tells us how to
construct the required costate p.

Lemma 6: For some m ≤ n, assume u1 , . . . , um ∈ [0, π) are
ordered so that uj > ui for all j > i. If

pi =

⎧⎨
⎩

− (ûm + û1) /2, i = 1
(ûi−1 − ûi) /2, i ∈ {2, . . . ,m}
0, i ∈ {m + 1, . . . , n}

then

sign
(
pT

i ûj

)
=
{
−1, i ≤ j
1, i > j

and the function

H(u) = 1 −
n∑

i=1

∣∣pT
i û
∣∣

satisfies

{u1 , . . . , um} = arg min
u∈[0,π )

H(u)

0 = min
u∈[0,π )

H(u).

Proof: First, we show that H(uj ) = 0. Notice that

1 −
n∑

i=1

∣∣pT
i û
∣∣ = 1 −

m∑
i=1

∣∣pT
i û
∣∣ .

Fig. 2. Algorithm that finds a solution to (1)–(2).

For i = 1, we compute

sign
(
pT

1 ûj

)
= sign

(
−
(

ûm + û1

2

)T

ûj

)

= −sign (cos (um − uj ) + cos (u1 − uj )) .

Since u1 , . . . , um ∈ [0, π), we have

cos (um − uj ) ≥ cos (0 − uj ) = cos uj

cos (u1 − uj ) > cos (π − uj ) = − cos uj

so in fact

cos (um − uj ) + cos (u1 − uj ) > 0.
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We conclude that sign
(
pT

1 ûj

)
= −1. By a similar computation

for i ∈ {2, . . . , m}, we find that

sign
(
pT

i ûj

)
=
{
−1, i ≤ j
1, i > j.

As a consequence

H(uj ) = 1 −

⎛
⎝−

j∑
i=1

pi +
m∑

i=j+1

pi

⎞
⎠

T

ûj

= 1 − ûj
T ûj = 0,

as desired.
Next, we show that H(uj ) is a minimum. Following the proof

of Lemma 3, we define the rotation matrix

R =
[

0, 1
−1, 0

]

and compute

dH

du
(uj ) =

⎛
⎝−

j∑
i=1

pi +
m∑

i=j+1

pi

⎞
⎠

T

Rûj

= ûj
T Rûj

= 0

and

d2H

du2 (uj ) =
m∑

i=1

∣∣pT
i ûj

∣∣ > 0,

as desired.
Finally, since we have identified m minima and since we

know from the proof of Lemma 3 that there are at most m, then
no other minima exist, and so we have our result. �

Lemma 7: The η-step trajectory (T,U, V ) produced by the
algorithm OPTIMALCONTROL(z1 , . . . , zn ) in Fig. 2 satisfies the
minimum principle for the problem (1)-(2).

Proof: It suffices to show that (T,U,Υ) satisfies the minimum
principle for η robots with initial position xi(0) = ζi for each i ∈
{1, . . . , η}. Our result would then be an immediate consequence
of Lemma 5. To do so, we must verify the boundary condition
(2) and the input constraint |vi(t)| ≤ 1, and we must show the
existence of p satisfying the conditions (4)–(5). First, let

tf =
η∑

j=1

Tj .

For i < η, we have

xi (tf ) = ζi +
η∑

j=1

TjΥij Ûj

= ζi −
i−1∑
j=1

(
‖ζj+1 − ζj‖

2

)(
ζj+1 − ζj

‖ζj+1 − ζj‖

)

+
η−1∑
j=i

(
‖ζj+1 − ζj‖

2

)(
ζj+1 − ζj

‖ζj+1 − ζj‖

)

−
(
‖ζ1 + ζη‖

2

)(
ζ1 + ζη

‖ζ1 + ζη‖

)

= ζi −
(

ζi − ζ1

2

)
+
(

ζη − ζi

2

)
−
(

ζ1 + ζη

2

)

= 0,

as desired. A similar computation verifies xη (tf ) = 0. Next,
we note that |vi(t)| ≤ 1 is trivially satisfied for i ∈ {1, . . . , η},
since we have chosen Υij = ±1. Finally, if we define

pi =

⎧⎨
⎩

−
(
Ûη + Û1

)
/2, i = 1(

Ûi−1 − Ûi

)
/2, i ∈ {2, . . . , η}

then Lemma 6 tells us that

{U1 , . . . , Uη} = arg min
u∈[0,π )

H(u)

0 = min
u∈[0,π )

H(u)

and

Υij = −sign
(
pT

i Ûj

)

for i, j ∈ {1, . . . , η}, so p satisfies the conditions (4)–(5) and
our result follows. �

III. SUFFICIENT CONDITIONS

In Section II, we showed that the trajectory produced by the
algorithm in Fig. 2 satisfies the necessary conditions for opti-
mality given by the minimum principle and so is a candidate
solution to the minimum-time optimal control problem (1)-(2).
The value function (i.e., cost-to-go) associated with this trajec-
tory was found to be

Q(x) = perim (conv ({x1 , . . . , xn ,−x1 , . . . ,−xn})) /4.

We will now establish sufficient conditions for optimality by
showing that Q is a viscosity solution to the Hamilton-Jacobi-
Bellman equation

min
u ∈ [0, π )
|vi | ≤ 1

H(x,∇Q,u, v) = 0. (7)

This partial differential equation enforces a condition analogous
to (5), but replaces the costate p by the gradient ∇Q in the
Hamiltonian function. We will remind the reader precisely what
a viscosity solution is in Section III-A. For now, it is enough to
note that Q cannot possibly be a “normal” solution to (7) since
it is not differentiable everywhere. The proof of our main result
will follow in Sections III-B and C.

A. Nonsmooth Analysis

In this section, we will say what it means for Q to be a
viscosity solution of the Hamilton–Jacobi–Bellman equation
(7). This material comes from the field of nonsmooth analysis
[26], [27]. The key idea is to extend our notion of a derivative
to points x at which Q is not differentiable.
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1) Generalized Derivatives: Consider a function

f(x) : R
n → R

that is everywhere Lipschitz. The generalized directional
derivative of f at x in the direction v ∈ R

n is

f ◦(x, v) = lim sup
y → x
t ↓ 0

f (y + tv) − f (y)
t

.

The generalized gradient of f at x is

∂f(x) =
{
p ∈ R

n : f ◦(x, v) ≥ pT v for all v ∈ R
n
}

.

The super-differential of f at x, denoted by D+f(x), is{
p ∈ R

n : lim sup
y→x

f(y) − f(x) − pT (y − x)
‖y − x‖ ≤ 0

}
.

The sub-differential of f at x, denoted by D−f(x), is{
p ∈ R

n : lim inf
y→x

f(y) − f(x) − pT (y − x)
‖y − x‖ ≥ 0

}
.

We note the following results, taken from [26] and [27]:
Lemma 8: Consider the continuous real-valued function f :

S → R defined on some open set S ⊂ R
n .

1) If f is differentiable at x ∈ S, then

D+f(x) = D−f(x) = {∇f(x)} .

2) If both D+f(x) and D−f(x) are non-empty, then f is
differentiable at x.

3) At any x ∈ S, we have

D−f(x) ⊂ ∂f(x).

4) Let Ω ⊂ S be a set of points at which f is differentiable,
and let x ∈ S \ Ω. If S \ Ω has zero measure in S, then

∂f(x) = conv

⎛
⎜⎝
⎧⎪⎨
⎪⎩ lim

y → x
y ∈ Ω

∇f(y)

⎫⎪⎬
⎪⎭

⎞
⎟⎠ .

5) At any x ∈ S, we have p ∈ D−f(x) if and only if there
exists a continuously differentiable function g : S → R

such that p = ∇g(x) and that f − g has a local minimum
at x.

These results will facilitate the process of actually computing
generalized derivatives.

2) Viscosity Solutions: Now, we return to the Hamilton–
Jacobi–Bellman equation (7). We say that Q is a viscosity su-
persolution of (7) if

min
u ∈ [0, π )
|vi | ≤ 1

H(x, p, u, v) ≥ 0 (8)

for every x ∈ R
n and p ∈ D−Q(x). We say that Q is a viscosity

subsolution of (7) if

min
u ∈ [0, π )
|vi | ≤ 1

H(x, p, u, v) ≤ 0 (9)

for every x ∈ R
n and p ∈ D+Q(x). We say that Q is a viscosity

solution if it is both a viscosity supersolution and a viscosity

subsolution. We recall (see, for example, [27, Sec. 8.7]) that
any such Q is unique. As a consequence, if we can find a
viscosity solution Q to (7), and if we can find a control pol-
icy that achieves Q(x) for any set of initial conditions x ∈ R

2

× · · · × R
2 , then this control policy is optimal.

B. Solving the Hamilton–Jacobi–Bellman Equation

In this section we will verify the conditions (8)-(9) and so
prove that Q is a viscosity solution of (7). We will abbreviate

X = R
2 × · · · × R

2 .

Lemma 1 tells us that the following result is sufficient:
Lemma 9: If p ∈ D−Q(x) for some x ∈ X , then

min
u∈[0,π )

(
1 −

n∑
i=1

∣∣pT
i û
∣∣
)

≥ 0. (10)

Similarly, if p ∈ D+Q(x) for some x ∈ X , then

min
u∈[0,π )

(
1 −

n∑
i=1

∣∣pT
i û
∣∣
)

≤ 0. (11)

Proof: Our proof will proceed as follows. First, we will ex-
press the value function Q in an explicit form that makes the
analysis easier (see Section III-B1). Second, we will construct
the set of points Ω ⊂ X at which Q is differentiable, will find

D+Q(x) = D−Q(x) = {∇Q(x)}

at any such point x ∈ Ω, and will show that (10)–(11) are both
satisfied there by the singleton p = ∇Q(x) (see Section III-B2).
Third, we will show that D+Q(x) is empty everywhere else,
and so (11) holds trivially for x ∈ X \ Ω (see Section III-B3).
Finally, we will compute a superset ∂Q(x) ⊃ D−Q(x) for x ∈
X \ Ω, and complete our proof by verifying that (10) holds for
all p ∈ ∂Q(x) (see Section III-B4). �

1) Form of the Value Function: The value of Q is invariant
under reflection

x′
i = −xi

for any i and reordering

x′
i = xj , x′

j = xi

for any i and j. So, we are free to assume that x1 , . . . , xm are
vertices of the convex hull

conv ({x1 , . . . , xn ,−x1 , . . . , xn})

for some m ≤ n, and that xm+1 , . . . , xn are not vertices of this
convex hull. We are also free to assume that x1 , . . . , xm are
ordered counter-clockwise about the origin, that

[
0
1

]T

xi ≥
[

0
1

]T

x1

for all i ∈ {1, . . . , m}, and that
[

0
1

]T

xm = −
[

0
1

]T

x1
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if and only if xi = xj for all i, j ∈ {1, . . . , m}. We may then
write

Q(x) =
1
2

(
‖x1 + xm‖ +

m−1∑
i=1

‖xi+1 − xi‖
)

.

2) Gradient of the Value Function: The set of all points at
which Q is differentiable is

Ω = {x ∈ X : xi �= xi+1 for all i ∈ {1, . . . ,m − 1}} .

Let x ∈ Ω. Then, we have

∂Q

∂xi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
x1 − x2

‖x1 − x2‖
+

x1 + xm

‖xi + xm‖

)
, i = 1

1
2

(
xi − xi+1

‖xi − xi+1‖
+

xi − xi−1

‖xi − xi−1‖

)
, 1 < i < m

1
2

(
xm + x1

‖xm + x1‖
+

xm + xm−1

‖xm − xm−1‖

)
, i = m

0, i > m.

Define u1 , . . . , um ∈ [0, π) such that

ûi =
{

(xi+1 − xi) / ‖xi+1 − xi‖ , i < m
(x1 + xm ) / ‖x1 + xm‖ , i = m

so we may express

∂Q

∂xi
=

⎧⎨
⎩

− (ûm + û1) /2, i = 1
(ûi−1 − ûi) /2, 1 < i ≤ m
0, i > m.

We take the convention

∇Q =
[

∂Q

∂x1

T

· · · ∂Q

∂xn

T
]T

and recall from Lemma 8 that

D−Q(x) = D+Q(x) = {∇Q(x)} .

Let p = ∇Q(x). Lemma 6 implies

min
u∈[0,π )

(
1 −

n∑
i=1

∣∣pT
i û
∣∣
)

= 0.

So, results (10)–(11) hold whenever x ∈ Ω.
3) Super-Differentials of the Value Function: Let y ∈ X \

Ω. Define I ⊂ {1, . . . , n} such that

{y1 , . . . , yn ,−y1 , . . . ,−yn} = {±yi : i ∈ I}
and that yi �= yj for all i, j ∈ I satisfying i �= j. Using this
index set, define the function

Q′(x) = perim (conv ({±xi : i ∈ I})) /4.

It is clear that Q′(x) is differentiable at y. It is also clear that
Q′(x) − Q(x) has a local minimum at y, since Q′(y) = Q(y) by
construction and—because increasing the size of a point set can
only increase the perimeter of its convex hull—we have Q′(x) ≥
Q(x) for all x ∈ X . If we define p = ∇Q′(y), then Lemma 8
implies that p ∈ D−Q(y). As an immediate consequence, we
can say that D−Q(x) is non-empty, hence from Lemma 8 that
D+Q(x) is empty, for all x ∈ X \ Ω. It is trivially the case,
therefore, that result (11) holds whenever x ∈ X \ Ω, hence for
all x ∈ X .

4) Sub-Differentials of the Value Function: Let x ∈ X \ Ω.
Recall from Lemma 8 that

D−Q(x) ⊂ ∂Q(x) = conv

⎛
⎜⎝
⎧⎪⎨
⎪⎩ lim

y → x
y ∈ Ω

∇Q(y)

⎫⎪⎬
⎪⎭

⎞
⎟⎠ .

Any limit point

q = lim
y → x
y ∈ Ω

∇Q(y)

can be expressed as

q = ∇Q(y′)

for some y′ ∈ Ω sufficiently close to x. In other words, there
always exists some y′ ∈ Ω at which

qi =
∂Q

∂xi

∣∣∣∣
x=y ′

for all i = 1, . . . , n. Since ∂Q(x) ⊂ R
n , any p ∈ ∂Q(x) can

therefore be expressed as the convex combination

p =
n+1∑
j=1

aj q
j

of n + 1 limit points q1 , . . . , qn+1 , where each aj ≥ 0, and

1 =
n+1∑
j=1

aj .

We have already established that

n∑
i=1

∣∣∣qj
i

T
û
∣∣∣ ≥ 1

for all j ∈ {1, . . . , n + 1} and u ∈ [0, π). We compute

min
u∈[0,π )

(
1 −

n∑
i=1

∣∣pT
i û
∣∣
)

= min
u∈[0,π )

⎛
⎜⎝1 −

n∑
i=1

∣∣∣∣∣∣∣

⎛
⎝n+1∑

j=1

aj q
j
i

⎞
⎠

T

û

∣∣∣∣∣∣∣

⎞
⎟⎠

= min
u∈[0,π )

⎛
⎝1 −

n∑
i=1

n+1∑
j=1

aj

∣∣∣qj
i

T
û
∣∣∣
⎞
⎠

= min
u∈[0,π )

⎛
⎝1 −

n+1∑
j=1

aj

n∑
i=1

∣∣∣qj
i

T
û
∣∣∣
⎞
⎠

≥ min
u∈[0,π )

⎛
⎝1 −

n+1∑
j=1

aj (1)

⎞
⎠ = 0.

So, result (10) holds whenever x ∈ X \ Ω, hence for all x ∈ X .
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Fig. 3. Construction of a minimum-time optimal trajectory for five robots using the algorithm in Fig. 2. (a) The initial positions. (b) The convex hull of
{z1 , . . . , z5 ,−z1 , . . . ,−z5}. The optimal inputs U1 and U2 are aligned with the edges of this convex hull. (c) The resulting 2-step optimal trajectory.

Fig. 4. Construction of an optimal trajectory for fifty robots. (a) The initial positions. (b) The convex hull of {z1 , . . . , z50 ,−z1 , . . . ,−z50}. It has 12 vertices,
implying six optimal inputs Ui (green arrows) associated with six costates pi (orange arrows). (c) The resulting 6-step optimal trajectory.

C. Proof of Optimality

We have arrived at our main result:
Lemma 10: The η-step trajectory (T,U, V ) produced by the

algorithm OPTIMALCONTROL(z1 , . . . , zn ) in Fig. 2 is optimal
for the problem (1)–(2).

Proof: It suffices to show that Q is a viscosity solution to (7)
and that the trajectory produced by OPTIMALCONTROL achieves
tf = Q(z) for any x(0) = z. The first result is provided by
Lemma 9 and the second by Lemma 7. �

IV. EXAMPLES

Having now shown that the trajectory produced by our algo-
rithm OPTIMALCONTROL (see Fig. 2) is optimal for the problem
(1)–(2), we will proceed to consider four examples in simula-
tion. The first two examples (see Section IV-A) should make
clear how the algorithm works. The third example (see Sec-
tion IV-B) provides a bound on the worst-case cost tf that is
useful for design. The fourth example (see Section IV-C) shows
how to consider obstacle avoidance while retaining optimality.

A. Computing Optimal Trajectories

Fig. 3 shows the construction of a minimum-time optimal
trajectory for five robots, using the algorithm in Fig. 2. The first
step of the algorithm is to reflect the initial positions across

the origin and to compute the convex hull of the result. In
this case, only two robots (index 1 and 4) start at vertices
of conv ({z1 , . . . , z5 ,−z1 , . . . ,−z5}), and so only these two
robots have any effect on the optimal trajectory—we could
simply ignore the others and arrive at the same result. As a
consequence, the optimal trajectory has only two steps, with
movement directions Û1 and Û2 that are aligned with edges of
the convex hull. The costates p1 and p2 shown in Fig. 3(b) were
the key to our proof of optimality: they led both to the necessary
conditions we presented in Section II and—when interpreted as
the gradient p = ∂Q/∂x of the value function—to the sufficient
conditions we presented in Section III.

Fig. 4 shows the construction of an optimal trajectory for
fifty robots, using the same approach. Despite the large number
of robots, the convex hull conv ({z1 , . . . , z50 ,−z1 , . . . ,−z50})
has only twelve vertices, so the optimal trajectory is again easy
to compute and has a simple geometric structure.

In general, computing the optimal trajectory for n robots re-
quires time O(n log n), which is exactly the time required to
compute conv{z1 , . . . , zn ,−z1 , . . . ,−zn}. As the two exam-
ples in this section demonstrate, however, the “complexity” of
the trajectory itself—as measured by the number of steps—is
likely to be much smaller than n. In particular, if z1 , . . . , zn are
sampled uniformly in the unit disc, then the expected number
of steps in the resulting optimal trajectory—i.e., the expected
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Fig. 5. Optimal trajectory for n = 10 robots that begin at vertices of a reg-
ular polygon with some radius r > 0. The cost of this trajectory is tf =
r (n sin (π/2n)), which approaches r(π/2) as n → ∞, providing a simple
bound on the worst-case “cost of coupling.”

number of vertices in conv{z1 , . . . , zn ,−z1 , . . . ,−zn}—will
converge asymptotically to n1/3 [33].

B. Worst-Case Cost

Fig. 5 shows an optimal trajectory for n = 10 robots with
initial positions

zi = r

⎡
⎢⎢⎣

cos
(

iπ

n
− π

2

)

sin
(

iπ

n
− π

2

)
⎤
⎥⎥⎦

for i ∈ {1, . . . , n} and some r > 0. In this case

conv ({z1 , . . . , zn ,−z1 , . . . ,−zn})

is a regular polygon with 2n sides, and so we easily compute

tf = r (n sin (π/2n)) .

As n → ∞, this cost converges asymptotically to tf = r(π/2),
and indeed, this example makes clear that in general

tf = perim (conv ({z1 , . . . , zn ,−z1 , . . . ,−zn})) /4

≤ π

2

(
max

i∈{1,...,n}
‖zi‖

)

for any choice of z1 , . . . , zn ∈ R
2 . If each robot was free to

move in any direction, this cost would instead be

tf = max
i∈{1,...,n}

‖zi‖

since robots would simply move along a straight line to the ori-
gin. As a consequence, with respect to our model, the design
compromise that couples the movement direction of the micro-
robots in [1]–[6] only makes these robots π/2 times slower in
worst case. This result is useful when deciding if it is worth the
effort to eliminate coupling through further hardware modifica-
tion.

Fig. 6. Optimal trajectory for five robots that is also collision-free, as a direct
extension of the example in Fig. 3. (a) The workspace R

2 . Both the robots
(red) and the obstacle (gray) are circular in shape. The final position of each
robot is shaded blue. Solid lines are paths followed by robots i for which
zi is a vertex of conv ({z1 , . . . , z5 ,−z1 , . . . ,−z5}). Dotted lines are paths
followed by other robots. (b) The coordination space [0, T1 ] × [0, T2 ]. The
red line is the function τ (t) that produces the workspace trajectory in (a)

by xi (t) = xi (0) + τ1 Vi1 Û1 + τ1 Vi2 Û2 . Green ellipses are regions of self-
collision; yellow ellipses are regions of collision with the obstacle.

C. Collision Avoidance

The trajectory produced by the algorithm in Fig. 2 is not, in
general, a unique solution to (1)–(2). For example, this algorithm
tells us to apply the inputs u(t) = U1 and vi = Vi1 for time T1 ,
then u(t) = U2 and vi = Vi2 for time T2 , and so forth. The
total cost would remain unchanged if we applied u(t) = U1
and vi = Vi1 for some fraction of time cT1 , where 0 ≤ c ≤ 1,
proceeded with the rest of the trajectory, and then returned at
the end to apply u(t) = U1 and vi = Vi1 for time (1 − c)T1 .
In fact, an optimal trajectory is produced by any continuous
vector-valued function

τ(t) : [0, tf ] → [0, T1 ] × · · · × [0, Tη ]

satisfying

τi(0) = 0
τi(tf ) = Ti

}
for i ∈ {1, . . . , η} (12)

and

dτi

dt
(t) =

{
1, for some i ∈ {1, . . . , n}
0, for all other i

(13)

for all t ∈ [0, tf ] at which τ is differentiable. When η = n, the
space of all such τ is exactly the space of all possible optimal
trajectories. (When η < n, there are even more possibilities, but
we will ignore them here for simplicity.) This space is reminis-
cent of the “task-completion diagram” or “coordination space”
that has been used in multi-robot motion planning [28]–[30].
We can use it to consider obstacle avoidance while retaining a
guarantee of optimality.

In particular, Fig. 6 shows an optimal trajectory for five robots
that avoids both self-collision and collision with a single obsta-
cle, assuming that both the robots and the obstacle are circular
in shape. This trajectory is optimal for exactly the same problem
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that we considered in Fig. 3—here, we have simply taken
arbitrary xi(0) and xi(tf ) satisfying zi = xi(0) − xi(tf ) for
i ∈ {1, . . . , n}. As we saw in Fig. 3, the solution (T,U, V ) that
is returned by OPTIMALCONTROL has two steps, so collision-free
optimal trajectories are captured by collision-free paths through
[0, T1 ] × [0, T2 ] that satisfy (12)–(13). One such path is shown
in Fig. 6(b), corresponding to the optimal trajectory in Fig. 6(a).
Any classical motion planning algorithm can be used to find
this path—in this case, we implemented a single-query, bidirec-
tional, probabilistic roadmap algorithm similar to the one found
in [34]. However, note that obstacles in [0, T1 ] × · · · × [0, Tη ]
exhibit a lot of structure: circular obstacles in the workspace
become ellipses in this “coordination space,” precisely because
for all i ∈ {1, . . . , n} there exist bi ∈ R

2 and Ai ∈ R
2×η such

that xi(t) = bi + Aiτ(t), or in other words x is a linear func-
tion of τ . Taking advantage of this structure is an opportunity
for future work.

Note that there is no guarantee an optimal trajectory exists
that is also collision-free. We view our approach as a strategy
for local connection between nearby waypoints, perhaps used
as a subroutine by a higher-level planner.

V. CURRENT LIMITATIONS AND FUTURE WORK

Our results in this paper have so far been entirely theoretical.
Here, we consider how these results might apply in practice. We
begin by acknowledging that our model (1)–(2) of the “Mag-
Mite” robots in [1]–[6] is an abstraction. For example, we ignore
the details of the resonant actuators that power these robots.
These actuators are driven by a time-varying magnetic field that
induces oscillatory impacts, the effect of which is modulated
by surface friction and electrostatic clamping. Similarly, we as-
sume that the orientation of the applied magnetic field—and, by
extension, of the robots—can jump instantaneously. While this
is a good approximation under slow switching, it may become a
very bad approximation under rapid switching, since in practice
there is some maximum rate at which the field orientation can
be changed. Finally, it is clear that (1)–(2) is not necessarily a
good model of any other microrobotic system, e.g., the unteth-
ered scratch-drive actuator [8] or the “Mag-μBot” [9], [10]. We
briefly address some of these limitations as follows.

1) Dealing with uncertainty: It is possible to implement our
optimal control law (see Fig. 2) as a state feedback policy, which
may help reject disturbances and model perturbations encoun-
tered in practice (e.g., related to the resonant actuators). We
have a closed-form expression for the value function Q(x), so
any choice of inputs u and v1 . . . , vn that achieve the minimum
in (8) for some p ∈ D−Q(x) are optimal. These inputs can be
found by maintaining the convex hull

C(t) = conv ({x1(t), . . . , xn (t),−x1(t), . . . ,−xn (t)}}

and doing the following at each sample time.
1) Find adjacent vertices a and b of C(t), ordered counter-

clockwise, that maximize the edge length ‖b − a‖.
2) Choose u such that

û = (b − a)/ ‖b − a‖ .

3) Choose vi = −sign(xT
i Rp) for i ∈ {1, . . . , n}, where

p = (b + a)/ ‖b + a‖ , R =
[

0 −1
1 0

]
.

We leave a proof of stability to future work.
2) Adding complexity to the model: Our analysis may ex-

tend to small changes in (1)–(2). For example, to handle rapid
switching of field orientation, we might use the model

ẋi = viû, for i ∈ {1, . . . , n}
u̇ = w

and restrict |vi | ≤ |w| ≤ 1. The Hamiltonian becomes

H(x, u, p, q, v, w) = 1 +
n∑

i=1

pT
i (viû) + qw

where we immediately see that

vi = −sign
(
pT

i û
)
, w = −sign (q)

and that there are at most n values of u at which q̇ = 0. In
the same way that solutions to (1)–(2) were concatenations of
straight lines, solutions to this new problem are evidently con-
catenations of Reeds–Shepp curves [24]. The details, of course,
remain to be worked out.

3) Generalizing to other systems: The time complexity of
our solution algorithm is O(n log n), and in particular is dom-
inated by the computation of a planar convex hull. This beau-
tiful geometric result is not one that we anticipated, and not
one that we expect will extend to other systems, or even to
variants of (1)–(2) like the one we consider above. However,
understanding why this result emerged may be the key to gen-
eralizing our approach. We do not have a complete answer to
this question, but believe it relates to the geometry of reach-
able sets. Robots in (1)–(2) are coupled by the choice of in-
put u(t). Given piecewise-constant u(t), the reachable set for
each robot is a copy of the same symmetric polygon. The op-
timal choice of u(t) is evidently the one producing the “small-
est” reachable set—in this case, the symmetric polygon with
minimum perimeter—that contains z1 , . . . , zn . This polygon is
conv ({z1 , . . . , zn ,−z1 , . . . ,−zn}). It would not be surprising
if this line of thinking produced a much simpler geometric proof
of our results in this paper. Generalizing this approach to other
models of other systems might require only an explicit repre-
sentation of the corresponding reachable sets. Even when these
reachable sets are non-convex or hard to compute exactly, a
convex relaxation may provide an approximate method of com-
putation. These ideas are speculative, but we hope that some of
them will be explored in future work.

APPENDIX

Our main result in this section is Lemma 13, which is neces-
sary in the proof of Lemma 2 in Section II. We will first prove
two supporting Lemmas. The mathematics required throughout
this section come from elementary real analysis [35].
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Lemma 11: Consider a function g(u) : R → R for which

g(u0) = 0,
dg

du
(u0) �= 0

at some point u0 ∈ R. Then, for any εg > 0 such that

εg <

∣∣∣∣dg

du
(u0)

∣∣∣∣
there exists δg > 0 such that |g(u)| ≥ εg |u − u0 | whenever
|u − u0 | < δg .

Proof: For any ε > 0, there exists δ > 0 such that∣∣∣∣g(u) − g(u0) −
dg

du
(u0)(u − u0)

∣∣∣∣ ≤ ε |u − u0 | (14)

whenever |u − u0 | < δ. From the reverse triangle inequality and
using the fact that g(u0) = 0, (14) implies

|g(u)| −
∣∣∣∣dg

du
(u0)(u − u0)

∣∣∣∣ ≥ −ε |u − u0 |

or equivalently

|g(u)| ≥
(∣∣∣∣dg

du
(u0)

∣∣∣∣− ε

)
|u − u0 |

For any εg > 0 such that εg < |dg(u0)/du|, take

ε =
∣∣∣∣dg

du
(u0)

∣∣∣∣− εg

and we have our result. �
Lemma 12: Consider a function h(u) : R → R that is dif-

ferentiable at some point u0 ∈ R. Then for any εh > 0 there
exists δh > 0 such that h(u) ≥ h(u0) − εh |u − u0 | whenever
|u − u0 | < δh . If, in addition, this function satisfies

dh

du
(u0) �= 0

then we may also ensure

sign (u − u0) = sign

(
dh

du
(u0)

)
.

Proof: For any ε > 0 there exists δ > 0 such that∣∣∣∣h(u) − h(u0) −
dh

du
(u0)(u − u0)

∣∣∣∣ ≤ ε |u − u0 | (15)

whenever |u − u0 | < δ. Equation (15) implies that

h(u) ≥ h(u0) +
dh

du
(u0)(u − u0) − ε |u − u0 | .

If dh(u0)/du = 0, then taking ε = εh we immediately have our
result. If dh(u0)/du �= 0, then requiring

sign (u − u0) = sign

(
dh

du
(u0)

)

ensures

h(u) ≥ h(u0) +
(∣∣∣∣dh

du
(u0)

∣∣∣∣− ε

)
|u − u0 | ,

so taking

ε =
∣∣∣∣dh

du
(u0)

∣∣∣∣+ εh

again produces our result. �
We are now ready to prove our main result.
Lemma 13: If g(u), h(u) : R → R are both differentiable at

u0 ∈ R and if

g(u0) =
dg

du
(u0) �= 0,

then f(u) = |g(u)| + h(u) has no maximum at u0 ∈ R.
Proof: Lemmas 11-12 tell us that for any ε = εg − εh > 0

satisfying ε < |dg(u0)/du|, there exists δ = min{δg , δh} such
that

f(u) ≥ εg |u − u0 | + h(u0) − εh |u − u0 |
= f(u0) + (εg − εh) |u − u0 |
= f(u0) + ε |u − u0 |

whenever |u − u0 | < δ and

sign (u − u0) = sign

(
dh

du
(u0)

)

if dh(u0)/du �= 0. This result implies that we can always find
nearby u1 �= 0 such that f(u1) ≥ f(u0), and so f(u) has no
maximum at u0 , as desired. �
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