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Testing Static Equilibrium for Legged Robots

Timothy Bretl, Member, IEEE, and Sanjay Lall, Member, IEEE

Abstract—Consider a legged robot at fixed foot placements.
Where can the robot move its center of mass (CM) while remaining
in static equilibrium? If the terrain is flat, the CM must lie above
the convex hull of the robot’s feet. If the terrain is not flat, this
often-used approximation can be arbitrarily bad. Instead, the CM
must lie above the projection of a nonlinear convex set that is de-
fined by the properties of each foot placement. This paper presents
an algorithm to compute the shape of this projection and gives a
tight bound on the algorithm’s running time. It also presents a
method of amortizing the cost of this computation when it is only
necessary to test static equilibrium at particular CM positions—
that is, when it is only necessary to test the membership of points
in the projection of a convex set rather than find its shape.

Index Terms—Computational geometry, frictional contact,
legged locomotion, mobile robots, motion planning, static
equilibrium.

I. INTRODUCTION

ONSIDER alegged robot at fixed foot placements on rigid
C terrain. For the robot to achieve static equilibrium, it must
be able to apply contact forces with its feet on the ground that
both compensate for the action of gravity at its center of mass
(CM) and avoid causing slip. We would like to know where the
robot can move while satisfying this constraint. So, in this paper,
we address the following problem: given fixed foot placements
with associated friction models, find the set of CM positions at
which contact forces exist that compensate for gravity without
causing slip. As we will see in Section II, this set is always a
right cylinder with a noncircular convex cross section. We call
this cross section the support region. Informally, “compensate
for gravity” means that the contact forces and CM position must
satisfy linear force and moment balance equations, and “no
slip” means that each contact force is restricted to a second-order
friction cone. These constraints define a convex but nonlinear set
of jointly feasible contact forces and CM positions. The support
region is the projection of this set onto the horizontal position
of the CM (in a plane perpendicular to gravity). So, to find the
support region, we will consider the following abstraction of our
physical problem: compute the projection of a nonlinear convex
set onto a 2-D linear subspace.
We will also discuss how to amortize the cost of this com-
putation when it is only necessary to test static equilibrium at
particular CM positions—that is, when it is only necessary to
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Fig. 1. Robot at three fixed foot placements. Depending on the properties of
each foot placement, the support region can be (a) the same, (b) inside, or (c)
outside the base of the robot’s supports.

test the membership of points in the projection rather than find
its entire shape.

A. Why the Support Polygon Is Insufficient

In some cases, computing the support region is easy. For
example, on flat terrain with frictional point contacts [see
Fig. 1(a)], the support region, in this case, a polygon, is the
convex hull of the robot’s supporting feet [1]. The right prism
having this polygon as cross section is the set of all CM positions
at which static equilibrium is possible.

In fact, the terrain does not have to be entirely flat for the
“support polygon” to be a good approximation of the support
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region. The two are equivalent if every foot can exert a force
parallel to the gravity vector without slipping. With friction-
less point contacts, the normal vector at every contact must be
vertical (opposite to gravity), but not all contacts need be in
the same horizontal plane. With frictional point contacts, every
friction cone must contain a vector that is vertical, but the center
of each cone (the normal vector at each contact) need not be
vertical.

In general, however, the support region is not a polygon [see
Fig. 1(b)], and, in fact, may lie completely outside the base of
the supports [see Fig. 1(c)]. In particular, notice in Fig. 1 that the
locations of each foot placement remain the same. By changing
only the direction of each surface normal, we have completely
changed the support region. Consequently, the support polygon
is a bad approximation of the support region on irregular and
steep terrain.

B. Application to Legged Locomotion

The support polygon has been a key concept in legged loco-
motion, its use vastly documented in the literature. Applied to
planning, it can be used to test the feasibility of postures (as
in [2]-[4]). Applied to control, it is the basis of the zero moment
point (ZMP) as defined in [5] and can be used to construct both
static and dynamic stability margins (as in [6] and [7]). And, of
course, it has been applied successfully to many fielded legged
robots (as in [4], [8], and [9]).

All of this success has come despite the problem described
earlier, as well as several other limitations.

1) It only gives necessary conditions for static equilibrium.
Additional assumptions must be made (controllability,
torque limits) before these conditions are sufficient [10].

2) It tests static equilibrium, but legged robots move dynam-
ically. These robots may not be running or jumping—
following a statically stable geometric path at too high a
velocity can also cause instability [11].

3) It describes the set of possible CM positions, but usually
it is the set of possible robot postures that we care about.
Further, the relationship between the CM position and the
posture is both nonlinear and nonconvex [12].

4) Tt tests static equilibrium but not static stability. We would
like the robot to be robust to disturbances [6].

5) Itindicates when contact forces exist that compensate for
gravity, but it does not indicate how to choose these contact
forces [13], [14].

Being a generalization of the support polygon to arbitrary foot
placements, the support region is subject to the same limitations.
Addressing these limitations is beyond the scope of this paper.
Instead, we accept the same breadth of applicability. In the
same ways that the support polygon is useful for legged robots
on terrain that is mostly flat, the support region is useful for
legged robots on terrain that is irregular and steep.

Recent work considers robots on exactly this type of terrain.
For example, robotic rock climbers can traverse featured in-
clined walls using techniques similar to human climbers [15],
and humanoids can use hands to help balance while leaning
against a wall or walking up a steep cliff [16]. In these applica-
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tions, the support region, not the support polygon approxima-
tion, plays a key role in both planning and control.

C. Related Work in Legged Locomotion

Past research on computing the support region in 3-D treats
the problem, like we do, as one of projecting a high-dimensional
convex set onto a 2-D linear subspace. In the work of [17], con-
tacts are assumed frictionless. This assumption reduces the num-
ber of constraints on contact forces and CM position and makes
these constraints linear. The resulting linear projection prob-
lem is solved using computational geometry [18]. In the work
of [15] and [19], friction cones are approximated by polyhedra;
so, the nonlinear constraints on contact forces are approximated
by linear ones. The resulting projection problem is harder than if
contacts are assumed frictionless, but is still linear, so is solved
in a similar way. In the work of [20], the support region is found
exactly using an algebraic approach. This approach, so far, ap-
plies only to legged robots making exactly three contacts with
the terrain, and is too slow to be used in the context of motion
planning and control. However, it does provide insight into the
structure of both the equilibrium constraints and the support re-
gion. Conceptually, the algorithms we present in this paper are
based on our earlier work [19]. The key difference here is that
we show provably bounded error, provide a tight bound on run-
ning time, and do not require friction cones to be approximated
by polyhedra.

D. Related Work in Dexterous Manipulation

Legged locomotion is similar to dexterous manipulation. Just
as a legged robot places and removes feet on the ground, a
robotic hand places and removes fingers on an object. Of course,
for manipulation, the “terrain” (the surface of the object) is
rarely flat and horizontal. So, methods for grasp analysis deal
with the same nonlinear constraints on contact forces and CM
position that arise for legged robots on irregular and steep terrain
(see [21] and [22] and the associated references).

However, whereas the support region is a useful concept for
legged locomotion, it is not useful for dexterous manipulation.
Recall that the support region defines the range of feasible CM
positions for a fixed set of contact points. Consequently, it is
primarily useful to compute the support region when the CM
position can be changed without changing the contact points.
During manipulation, it is the object (not the hand) that must
be in static equilibrium. If the object is modeled as a rigid
body, then it has no unconstrained degrees of freedom when it
is grasped. So, for the CM of the object to move, the contact
points must move (either locally on the object or globally in
space), changing the support region.

Although it is not useful to compute the support region for
manipulation, similar types of computations are performed. For
example, the work of [23] addresses the problem of finding
concurrent grasps of a polyhedral object in 3-D with four point
contacts. In a concurrent grasp, the lines of action of all contact
forces intersect at a point. It is simpler to find concurrent grasps
if the position of this point is eliminated from the equilibrium
constraints. By approximating friction cones as polyhedra, as in
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related work on legged locomotion, this elimination becomes a
problem of linear projection (in this case from an 11-D space to
an 8-D subspace), for which a new algorithm is proposed [23].
This algorithm does not extend to projection of nonlinear sets.
But like ours, it is output sensitive—its running time depends
primarily on the complexity of the projection, not of the set to
be projected.

Other research in manipulation has motivated our use of non-
linear friction models rather than polyhedral friction cone ap-
proximations. In particular, the work of [24] cites four disad-
vantages of a linear approximation. First, the approximation
may be overly conservative. Second, the approximation is non-
isotropic, a usual assumption in the Coulomb friction model.
Third, the approximation magnifies the affects of small pertur-
bations in model parameters. And fourth, although in theory the
approximation can be made arbitrarily precise, in practice, the
precision is limited by running time. In [24], problems related
to grasp analysis (force closure, feasibility, and optimization)
are solved—retaining a nonlinear model—by casting them as
convex optimization problems involving linear matrix inequal-
ities. In this paper, we solve a sequence of convex optimization
problems to find the support region.

E. Related Work in Computational Geometry and Optimization

Finding the exact projection ) of a set X bounded by non-
linear constraints can be done using quantifier elimination.
However, existing algorithms, such as cylindrical algebraic de-
composition, have complexity at best exponential in problem
parameters (such as the number of variables and number of
constraints defining &’) [25], [26]. Furthermore, there is no
guarantee that X and ) can be represented in the same way.
For example, the projection of a set bounded by second-order
cone constraints cannot, in general, be represented using second-
order cone constraints (the same is true for linear matrix inequal-
ities). Similarly, although the projection of a semialgebraic set
is always semialgebraic, polynomials of arbitrary degree are
necessary to represent it.

Finding the exact projection ) of a set X bounded by lin-
ear constraints is a central problem in computational geometry,
and there are many algorithms available (see [27] for sample
code). Some algorithms are based on quantifier elimination,
specialized for linear constraints (see [28] for a survey). These
algorithms construct Y directly by computing valid inequalities
(positive combinations of the linear inequalities defining X’),
each of which eliminates a variable. Other algorithms are based
on methods for finding convex hulls. These algorithms construct
Y indirectly by first enumerating all vertices of &', projecting
these trivially onto a low-dimensional subspace (for example,
by dropping coordinates), then enumerating all facets of the re-
sult [29]-[32]. In fact, due to a correspondence between linear
inequalities and vertices (one can be represented as the other in
a dual space), algorithms for elimination and enumeration are
mathematically equivalent. But, there is still an inherent compu-
tational complexity associated with linear projection, since the
number of inequalities defining ) is, in worst case, exponential
in the dimensionality of X. Numerical stability is also an issue,
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and it is difficult to know when linear projection will be easy or
hard.

One way to approximate the projection ) of a set X bounded
by nonlinear constraints is first to find a linear approximation
Nlinear of X, and then, to find the exact linear projection Vipear
of Alinear. For example, friction cones can be approximated
by inscribed polyhedra in problems related to static equilib-
rium [19], [23]. More generally, there are systematic ways of
constructing Xljpear SO that Vipear i @ good approximation of
Y [33], and the results of doing so have been analyzed in the
context of convex optimization [34]. These studies suggest that
linear approximation of X is effective for problems with many
variables and constraints (hundreds of thousands in the case
of optimization), which, in practice, can be handled by linear
solvers but not by nonlinear ones.

An alternative approach is suggested by cutting plane algo-
rithms, which can be used to solve convex feasibility problems.
These algorithms maintain a polyhedral approximation to the
set of feasible points. At every iteration, a query point is picked
inside this polyhedron. Either this query point is feasible, or
a hyperplane—a cutting plane—can be found that separates it
from the set of feasible points. This hyperplane cuts the polyhe-
dron, making it smaller (more accurate) for the next iteration.
In this paper, we use a cutting plane algorithm to construct a
polyhedral approximation Vjpnear 0f the projection ) directly
from the nonlinear set X’. Here, we are not interested in finding
one feasible point (one feasible CM position), but rather in find-
ing the entire feasible set (the entire support region). As for all
cutting plane algorithms, the main problem is choosing a good
sequence of query points. Our approach is similar to [35].

F. Our Contributions

This paper presents an algorithm to compute the projection
of a nonlinear convex set onto a 2-D linear subspace. Our al-
gorithm maintains inner and outer polygonal approximations to
the projection. It iteratively computes points on the boundary
of the projection—hence, supporting hyperplanes—by solving
a sequence of convex programs. The key advantage of our algo-
rithm is that it has provably bounded error. Hence, error can be
made arbitrarily small by using a stopping criterion based on the
error bound. Our algorithm can be applied to compute the sup-
port region to any desired precision for a legged robot making
any number of contacts with any type of terrain. It requires only
that the frictional contact model involve convex constraints.

We also extend our algorithm to test the membership of points
in the projection of a nonlinear convex set without computing
the entire shape of the projection. Here, we still maintain inner
and outer polygonal approximations to the projection, but iterate
only until a query point lies either inside the inner approximation
(proving feasibility) or outside the outer approximation (proving
infeasibility). We prove a bound on the number of iterations
required to achieve a desired precision for each query point.
We also show that for some sets of query points, our approach
is faster than either testing each query point individually or
precomputing the projection. This extension can be applied to
test static equilibrium at particular CM positions for a legged
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Fig. 2. Three-legged robot in static equilibrium at frictional point contacts.

robot with fixed foot placements. Again, it applies to any number
of contacts and any type of terrain, requiring only a frictional
contact model involving convex constraints.

II. MATHEMATICAL MODEL OF STATIC EQUILIBRIUM

Consider a legged robot walking on uneven terrain in a 3-D
workspace (see Fig. 2). Suppose the robot is currently making
contact with the terrain at n frictional points ry,...,7, € R3,
each with some outward (unit) normal vector v; € R? and static
coefficient of friction p;. Let x; € R3 be the reaction force
acting on the robot at each point r; for i = 1, ..., n. This force
can be decomposed into a component v! z;v; normal to the
surface of the terrain (in the direction v;) and an orthogonal
component (I — v;/l )z; tangential to the surface. Let ¢ € R3
be the position of the robot’s CM, which varies as the robot
moves. Assume the robot has mass m and the acceleration due
to gravity is g € R3. All of these vectors are defined with respect
to a global coordinate system with axes e, e, e3 € R?, where

g = —||g|les. Then, we say that the robot is in static equilibrium
if
n
> azi+mg=0 (1)
i=1
n
Zrixijrcxmg:O 2)
i=1
||(I—1/,1;ViT)x,,;|| g,uiViTmi foralli=1,...,n. (3)

These are convex constraints on the reaction forces x1,...,x,
and the CM position c. Constraints (1) and (2) ensure force and
torque balance. Constraint (3) restricts each reaction force to
lie in a friction cone of half angle ¢; = tan™! x;, according to
a Coulomb model. Notice that these constraints do not depend
on the robot’s entire posture. Rather, they depend only on the
robot’s CM position c and the properties of each foot placement.
In fact, denoting the coordinates of ¢ by ¢, ¢y, c5 € R, we see
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that

—cy
cxmg=mllg| | a
0

so constraints (1) and (2) depend only on the horizontal position
of the CM (in a plane perpendicular to gravity). We define this
position as

y = Pc where P:{l 0 0}.

0 10

For any z € R® with coordinates 21, 22, 23 € R, we define the
skew-symmetric matrix

0 —Z3 z9
T(z)=| 2z 0 -z
—Z9 Z1 0

so that T'(z)x = z x z for all x € R3. So, (1) and (2) become

Z xi+mg=0 4)
i=1
ZT(ri)xi —T(mg)PTy =0. 5)

i=1

‘We now have the following conditions: z, . .
(1)-(3) if and only if

., T and c satisfy

Ajx+ Ay =t
|Bz| < u'x (6)
where
"
T = , y = Pc
L zN
A — I I } ’
L T'(r1) T(ry)
[ 0 —-m
A= -—T(mg)PT} LT { 09]
H1V1
B =diag(I — vl ,...,T —v,vl), u=
fin Vn

From (6), the set of all feasible reaction forces = and CM posi-
tions y at fixed contacts is

X={zeR® yecR?|Ajz+ Ayy = t,||Bz| < u”z}.

Likewise, the support region (that is, the set of all feasible CM
positions y at fixed contacts) is the projection ) of X onto
y-space, namely

Y = {y € R? |3z € R*" such that (z,y) € X'}.
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III. COMPUTING THE SUPPORT REGION

In the previous section, we saw that the support region can be
represented as the projection of a nonlinear convex set bounded
by linear and second-order cone constraints onto a 2-D linear
subspace. In this section, we present an algorithm to compute
the shape of this projection.

A. Problem Statement

For some integers m,n > 0, given arbitrary A; € R™*",
Ay e R™*2 t ¢ R™, B € R"*® andu € R”, we want to com-
pute the set

Y = {y € R*|3z € R" such that (z,y) € X'}
where
X ={zeR" yeR’Ajz+ Ay =t |Bx| <u'z}.

The set X is defined using linear and second-order cone con-
straints, but, in general, it is not possible to do the same for the
projection Y. In fact, although ) is semialgebraic, representing
it exactly requires polynomials of arbitrary degree. So, our goal
instead is to approximate ) by an inscribed polygon

Vimner = {y €R?|a] y < b;  foralli=1,...,N}.

Assuming that Y is bounded and has nonempty interior, then
for any € > 0, we will find a; and b; fori = 1,..., N such that

yinner g y area(y) — area(yinner) S €.

The parameter € specifies a desired bound on the error of our
approximation. By decreasing €, we can approximate ) to any
required precision.

and

B. Algorithm

We compute Vi, using the algorithm PROJECT (see Figs. 3
and 4). This algorithm generates a sequence of points on the
boundary of ) and takes Yiner as the convex hull of these
points. Each point v € R?, extremal in some direction a € R?,
is found by solving a second-order cone program (SOCP) [36]
of the form

maximize a2z
subjectto  Ajx + Ayz =t @)
|Bz| < u’x

and taking v = z,,. Every point v also defines a halfspace
{zeR?a"2z< a0} D Y.

So, in addition to Yinner, our algorithm constructs an outer
polygonal approximation ), ter = ) as the intersection of these
halfspaces.

The algorithm PROJECT is dual to a cutting plane algorithm.
As for all cutting plane algorithms, the main problem is choosing
a good sequence of query points; in this case, choosing a good
sequence of query directions a in the objective function of each
SOCP (7).

We use the difference between Vinner and YVoyuier to guide our
choice of a. In particular, we know that any point in Ve, 1S
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PROJECT(X, yinner, youler)

Given bounded polygons Youer 2 Y and YVimer €Y with
nonempty interior such that every vertex of Yimer lies on the
boundary of Vouter-

Repeat while area(Vouer) — area(Vinner) > €
o Compute the edges of Vimer and denote them
{2 € Vimer | @] 2=0;} forall j=1,...,N.
o Pick the edge cutting off the greatest fraction of YVouter-
i=argmax;c; . ny area({ z € Youer | a?z >b; b
o Find the point in Y farthest outside this edge.
v = argmax, .y alz
Do this by solving the second-order cone program
maximize agpz
subject to  Aix + Az =1t
|Bz|| < u”z.
« Update the outer approximation.
Vouer = {2 € Vouer | af 2 < aj v}
« Update the inner approximation.
Yinner = conv (Vipner U {v})

Return y inner -

Fig. 3. Algorithm to compute the support region.

also in ) and that any point not in Y, ., is also not in ), so our
goal is to reduce the set of points

2
youter - yinner = {Z eR IZ ¢ yinnera S youter}

remaining to be classified. If )i, contains NV edges, then this
set consists of at most NV triangles, each outside and adjacent to
exactly one edge a; of Vinner for j = 1,..., N. We choose the
direction a; normal to the edge inside the triangle with largest
area. So, we choose the direction expected to most reduce the
area of the set of points remaining to be classified.

We also use the difference between Vi e and YV, yier to bound
the difference between )i,,o; and ), and consequently, to bound
the approximation error. Since

area()) — area(Vinner) < area(Vouter) — area(Vinner)
then, we iterate until
area(Vouter) — area(Viner) < €.
In fact, we can give a tight bound on the number of iterations
required to achieve this stopping criterion.

Theorem 1: Suppose Vinner begins with 1y edges and that the
initial difference in area between Vinner and YVyyuier 18

ay = area(youtcr) - area(yinncr)~
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y outer

conv (Vinner U {v})

Y Quter.l afz B Clgq’l)}

(b)

Fig. 4. One iteration of the algorithm PROJECT (see Fig. 3).

Then, for any € > 0, the algorithm PROJECT will terminate after
no more than

iterations, where ¢ = 343/243 ~ 1.412 is a fixed constant.
Proof: See Appendix L. |

C. Results in Simulation

The algorithm PROJECT computes the projection of a nonlin-
ear convex set onto a 2-D linear subspace. The key advantage of
using this algorithm to compute the support region for a legged
robot is that Theorem 1 guarantees provably bounded error. As
an example, in Fig. 5, we compare the number of iterations 7
required to achieve a given error bound e for the legged robot
shown in Fig. 2. Our results show strong agreement with the
bound predicted by Theorem 1.

In contrast, Fig. 6 shows two common approximations to
the support region. The first is the support polygon, which is
completely incorrect (as described in Section I). The second
is obtained by approximating friction cones with six-sided in-
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10°

10~1*

10-2 Predicted bound

Actual results

Error €

107 5F

1076}

10—7 L L
10° 10t 102 103

Number of iterations 7

Fig.5. Number of iterations 7 required to achieve a given error € with PROJECT
for the example shown in Fig. 2.

128

support region

\

linear-constraints approximation

support-polygon approximation

Fig. 6. Actual support region (computed using PROJECT) as compared to
the support-polygon approximation and to the linear-constraints approximation
(where friction cones are modeled by six-sided inscribed polyhedra).

scribed polyhedra, so that X is bounded by linear constraints and
Y can be found using exact linear projection. Here, this “linear-
constraints” approximation works poorly, resulting in € = 0.2.
It is possible to reduce this error by using inscribed polyhe-
dra with more sides, but there is a corresponding increase in
computation time and the number of sides required varies from
problem to problem.

The actual results in Fig. 5 show an oscillation that is not
reflected by the predicted bound. The reason for this oscillation
is that, in practice, PROJECT makes batches of cuts to the set
Youter — Vinner that have similar size. During a batch, the error
bound € decreases linearly with the number of iterations 7.
After a batch is done, the cut size decreases, and so, € decreases
linearly at a slower rate. Since a straight line with negative slope
and axis crossings (0, ¢) and (£, 0) on a linear plot is equivalent
to a curve with asymptotes at both z = & and y = g on a log—log
plot, then the result of each batch is a curve with asymptotes at
progressively lower € and higher 7. The oscillation in Fig. 5 is
the concatenation of these curves.
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In this analysis, we measured the performance of PROJECT by
the number of SOCPs it has to solve, since these take up the bulk
of the computation time. The rest of the time is spent maintaining
vertex and facet representations of both Viner and Voyter and
updating these representations by taking convex hulls, all of
which can be done efficiently in 2-D (for details of our software
implementation, see our earlier work [19]).

IV. TESTING IF THE CENTER OF MASS IS OVER THE SUPPORT
REGION

In the previous section, we presented an algorithm to com-
pute the projection of a nonlinear convex set onto a 2-D linear
subspace. This algorithm can be used to compute the support
region for a legged robot. One reason we might be interested in
finding the support region is to test static equilibrium quickly
at many different CM positions. But, in fact, it is possible to do
so without computing the entire support region. In this section,
we extend our algorithm to test the membership of points in
the projection of a nonlinear convex set without computing its
entire shape.

A. Problem Statement

We are given integers m,n > 0 and arbitrary 4; € R™*",
Ay e R™*2 t e R™, B € R"*", and u € R" that define

X ={zeR"ycR|Ajz+ Ay =t,||Bz| < u’z}.
We want to test the membership of a sequence of query points
Y1,---,yr € R? in the projection

Y = {y € R? |3z € R" such that (v, y) € X}.

We must answer each query one-by-one, in the order that it is
given. The number k of queries is initially unknown. Our goal
is to minimize the total expected time required to answer all
queries.

B. Algorithm

What makes this problem hard is that we do not know the
number of query points k. If k is large, it still makes sense to
use the algorithm PROJECT (see Fig. 3 in the previous section)
to precompute the e-approximation

yinner = {y S R2|alTy S bi forall ¢ = 1’ . ’N}
where
area(y) — area(Vinner) < €

because then, to test whether each y; € ), we simply verify that
aly; <b; fori=1,..., N. But, if the number of points k is
small, and particularly, if the required error bound € is small,
then it is wasteful to precompute Vipner. To do so, we need to
solve many SOCPs of the form (7), whereas we only need to
solve one SOCP

find z
subjectto  Ajz = (t — Ayy;)
|Ball < o ®

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 4, AUGUST 2008

TEST-SAMPLE (X, Vinner, Vouter; ¥)

Given bounded polygons Youer 2 Y and YVimer €Y with
nonempty interior such that every vertex of Yimer lies on the
boundary of Vouter-

Repeat while y & Vinner and y € Vouter:
o Compute the edges of Vimer and denote them
{zeyinner | a?z:bj}foralljz ].,...,N.
« Pick the (unique) edge separating Vigner from y.
. T
i =argmaxX;cqy N} ;Y — b;
o Check the convergence of YVinner and Youter. If
area({ z € Vouter | al-Tz >b})<e

then declare y € Viner and exit loop.
o Otherwise, find the point in Y farthest outside edge 4.

v = argmax, vy al z
Do this by solving the second-order cone program
maximize aiTz
subject to Aix + Az =t
|Bz| < u”z.
« Update the outer approximation.
Vower = {2 € Vouer | a1 2 < ajv}
« Update the inner approximation.
Yinner = conv(Vinner U {v})

If y € Yiner return TRUE, otherwise return FALSE. Also return
both y inner and y outer -

Fig. 7. Algorithm used to test if a CM position is over the support region.

to test if a single point y; is in ). Unfortunately, we do not know
ahead of time which approach is the best.

To address this problem, we use a method of amortizing com-
putation. In particular, we use the incremental algorithm TEST-
SAMPLE (see Figs. 7 and 8) to check if a query point y lies in the
projection ). Our algorithm does not solve a single SOCP to
test explicitly if y € ). Instead, like PROJECT (see Fig. 3), TEST-
SAMPLE constructs inner and outer polygonal approximations
YVinner € YV and Yyuter 2 Y, respectively. But, rather than pre-
compute all of Viyner and Voyter, TEST-SAMPLE computes only
enough of them to answer each query. Then, after TEST-SAMPLE
terminates, we store Viyner and Vouter to make subsequent eval-
uations faster. In particular, future queries might be answered
without updating Viyner OF Vouter any further.

Each iteration of TEST-SAMPLE solves one SOCP to generate
both a point on the boundary of Y (extremal in some direction
a) and a halfspace supporting ) at this point (normal to a).
It constructs Vipner as the convex hull of extremal points, and
Vouter as the intersection of supporting halfspaces. So, as in
PROJECT, each iteration shrinks the set of points

{Z S RQ |Z ¢ yinncra zE youtcr}
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y outer

(W)

Fig. 8.  One iteration of the algorithm TEST-SAMPLE (see Fig. 7).

remaining to be classified, which consists of at most N triangles
if Vinner contains N edges. As before, we choose the search
direction a; normal to one of these edges. But, rather than choose
the edge adjacent to the largest triangle, we choose the edge
adjacent to the triangle that contains y. By construction, this edge
is unique—we know that aly > b; for some i € {1,..., N}
and that aJTy <bjforall j =1,..., N such that j # i. Hence,
each iteration of TEST-SAMPLE localizes y to a smaller region
between Vinner and Vouter-

Our algorithm loops until either y € Viyner (implyingy € )
or y & Vouter (implying y ¢ V). To deal with points lying ex-
actly on the boundary of ), our algorithm also terminates
(declaring y € ) if it localizes y to a region smaller than a
given error bound €, in particular, if

area({z € Youter | @] 2 2 b;}) < €.

We can give a bound on the number of iterations required to
achieve this stopping criterion.

Theorem 2: Given y € R? where y € Vouter and ¥ & Vinners
let {z € Vinner | @’ z = b} define the edge of Viyne, for which
a”y > b and suppose that the area outside this edge between
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10® .
Solve socp for each query
PROJECT, ¢ = 104
B L L L P T R PR LR Z e R PR P PP PR PR EEEE
=
g
T ol BRI L SUOEC il i
2
B
o —2
5 PROJECT, € = 10
°©
g
=
Z 10t} PROJECT, € = 10711
TEST-SAMPLE
10° . . .
10° 10* 10? 10® 10*
Number of query points
Fig.9. Number of iterations required to test a variable number of query points

for the example shown in Fig. 2. Results for TEST-SAMPLE are averaged over
200 runs; the shaded region shows the range of values.

Vinner and Voyter 18 initially
ag = area({z € Vouter |aTz > b}).

Then, for any € > 0, the algorithm TEST-SAMPLE will terminate
after no more than

In (ag/€)
In4
iterations.
Proof: See Appendix II. [ |

C. Results in Simulation

The algorithm TEST-SAMPLE tests the membership of a point
in the projection of a nonlinear convex set. Theorem 2 guarantees
the convergence of this algorithm. In particular, it guarantees that
if we are forced to update Viyner and Yoy ter in order to classify a
query point y € R2, then this update takes no more than a small
number of iterations. However, Theorem 2 does not tell us how
often we need to update Ve and Voyter given a sequence of
query points qi,...,q: € R%. Indeed, the performance of our
algorithm depends on the expectation that only a small fraction
of query points will force an update.

In practice, this expectation is often satisfied. As an example,
consider the case in which query points are sampled uniformly
at random in a fixed, closed subset U C RZ?, where we assume
Youter € U. Then, the probability of an update is

area(youter) - area(yinner>
area(U)

Every iteration of TEST-SAMPLE improves our approximation
of Y and reduces the difference area(Vouter) — area(Vinner )> SO
every time Yinner and YV,uier are updated, it is less likely that
they will need to be updated in the future.

Fig. 9 shows the number of iterations required to test an
increasing number of query points with TEST-SAMPLE, averaged
over 200 simulations for the example shown in Fig. 2. The results
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Fig. 10.  Application of TEST-SAMPLE to the example shown in Fig. 2 for 1,
10, 50, and 100 query points, respectively, sampled uniformly at random. The
set ymnnr - yinner is shaded.

of one simulation are shown in Fig. 10. We sampled query points
uniformly at random and chose U such that the initial probability
of an update is 1/2. For comparison, in Fig. 9, we also show
the number of iterations required both if each query point is
tested individually [with an SOCP of the form (8)] and if the
projection ) is precomputed (using PROJECT, as in Fig. 3). As
expected, individual testing works well for a small number k of
queries but poorly for a large number, while precomputation is
just the opposite. In contrast, the key advantage of our algorithm
TEST-SAMPLE is that it works well over a wide range of k.

As the number of queries k grows very large, precomputation
eventually requires fewer iterations than TEST-SAMPLE. How-
ever, when this occurs depends on the error bound e specified
in PROJECT: we show results for a range of ¢ in Fig. 2. Increas-
ing e decreases the number of iterations, but it also increases
the likelihood of misclassifying query points with PROJECT. In
contrast, the average number of iterations for TEST-SAMPLE re-
mains the same regardless of e. It is true that the variance in
the number of iterations increases as e decreases, but, in prac-
tice, we can still choose € as small as we like. In particular, we
chose ¢ = 1078 for TEST-SAMPLE in this example, making the
likelihood of misclassifying query points sampled uniformly at
random negligibly small.

V. CONCLUSION

In this paper, we presented an algorithm, PROJECT, to com-
pute the projection of a nonlinear convex set onto a 2-D linear
subspace, with provably bounded error. Our algorithm can be
applied to compute the support region for a legged robot making
any number of contacts with any type of terrain, as long as the
frictional contact model involves convex constraints.

We also presented a second algorithm, TEST-SAMPLE, to test
the membership of points in the projection of a nonlinear convex
set without computing its entire shape. We showed that for some
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sets of query points, TEST-SAMPLE is faster than either testing
each query point individually or precomputing the projection.
This algorithm can be applied to test static equilibrium for a
legged robot at particular CM positions. Although PROJECT can
also be used for this purpose, we recommend the use of TEST-
SAMPLE since the likelihood of misclassifying query points can
be made much lower in practice.

There are several opportunities for future work. For exam-
ple, it is possible to generalize our approach to compute the
projection of a nonlinear convex set onto an n-dimensional lin-
ear subspace, where n > 2. The proof of convergence follows
from a dual interpretation of PROJECT and TEST-SAMPLE, where
we take advantage of their similarity to Kelley’s cutting plane
method [35]. When n = 3, this result can be used to compute
the robust support region for a legged robot, which (as suggested
by [37]) is the set of CM positions at which static equilibrium
is possible given any external wrench in a neighborhood of the
load due to gravity.

APPENDIX I
PROOF OF THEOREM I

Suppose Vinner begins with 7y edges and that the initial dif-
ference in area between Y ner and Vouter 1S

ap = area(youter) - area(yinner)-

We will show that the algorithm PROJECT achieves any desired
precision € > 0 after no more than

()

iterations, where ¢ = 343/243 ~ 1.412 is a fixed constant. Our
proof will proceed in three steps. First, we will represent one
iteration of PROJECT as a simple operation on a list of positive
real numbers (that correspond to areas of triangles). Then, we
will bound the sum of these numbers after k iterations. Finally,
we will apply this result to bound the number of iterations
required by PROJECT to achieve e.

A. One Iteration of PROJECT is a Simple Operation Applied to
a List of Triangle Areas

Recall that Viyner is a bounded polygon with nonempty in-
terior. So, if Vinner contains IV edges, then the region between
Vinner and YVoyter consists of IV triangles (where we allow these
triangles to have zero area). A single iteration of PROJECT re-
places the triangle of greatest area with two smaller triangles.
In particular, we will show that if the original triangle ¢ has area
p; > 0, then the two smaller triangles will have total area no
greater than p; /4 (see Fig. 11).

Lemma 3 Denote by yi?lneﬂyguter and yilnneﬂy(}uter the
polygonal approximations to ) before and after any single iter-
ation of PROJECT, so

1 0 T T
outer — {Z € youter | a; z S a; U}
and

yilnncr = Conv(yi?lncr U {’U})
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(o-)n

(a)

Fig. 11.  Single iteration of PROJECT reduces the triangle above edge ¢ to the
shaded region, the area of which is bounded above for any point v.

for some choice of 7 and v. Let
By = area({z € J°,... |al 2 > b;})
and
By = area({z € Vlyer a2 > by and = ¢ Vi })-

Then
h
Bo
Proof: Let wy, be the length of the
{ze I o lalz=1b}of Y0 .. Let

inner*

1
hy = — ( max aiszi)
||aLH Zeyguter

e~ =

edge

and
h1 :L(arv—b).
fJaill
Notice that
Bo = %woho
and
hy
B =3 <wo + (1 - ) wo) hi — Swoha
ho
= ;wofh (1 - Z;)
so, we have
B (i)
Bo  ho hy )"
Since

max

hfp oMy 1
h1€[0,ho] \ ho ho 4

then, whatever our choice of v, we must have
1
B

50_1'
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This result allows us to represent one iteration of PROJECT
as a simple operation on a list of positive real numbers. In
particular, assume iy ,e; contains [NV edges, SO0 Vouter — Vinner
consists of V triangles that we number 1, . .., N. Definep € RY
such that each element p; > 0 is equal to the area of triangle
1. Then, a single iteration of PROJECT maps the vector p to a
new vector ¢ € RV*1 by replacing the largest element p; of p
with two new elements g; and g;; of ¢, such that ¢; + ¢ < p; /4.
In the following section, we will consider the (now abstracted)
problem of bounding the sum 17 ¢ after many iterations.

B. Bounding the Sum of Triangle Areas After k Iterations

We first define a convenient sorting function for lists. Let
f:R" — R" be givenby y = f(x) if there exists a permutation
P such that y = Px and

YIZ2Y2 2 2 Yn-

Next, given a point p € R™, we define a subset A C R+! a5
follows. Lety = f(p). Then, a point ¢ is in A if there exista, b >
0 such that a + b < y; /4 and the vector ¢ is some permutation
of the list (y2, Y3, - - - , Yn, @, b). Since with every point p € R"
we have a set of points A C R"*!, this defines amap g, : R" —
2" where g, (p) = A. Lemma 3 implies that if p is a list of
the n triangle areas between Vipner and Vouter, then the set of
possible n + 1 triangle areas after a single iteration of PROJECT
is equal to g, (p).

Finally, for each k£ € Z such that k > 1, we define the map
max;, : R" — R by

max; (z) = (f(z)); -

That is, max;, () is the kth largest element of = where we count
multiplicities. For example

maxs(5,4,4,2) = 4.

The next three lemmas are key steps in the proof of our main
result, Lemma 7, which bounds the sum of triangle areas after
k iterations.

Lemma 4: Suppose p € R" and ¢ € g, (p) such that p > 0.
Then

n+1 n 3
(1 Zqi < ij - zmaxl(p)
i=1 j=1
(2) maxyi1(p) < maxi(q) forall k=1,...,n— 1.

Proof: For part (1), since g € g, (p) there exists a,b > 0 and
a permutation matrix P such that

0 Lz -1 0
g=P| |0 0 | [+ ]|a
0 0 b

where a + b < max; (p)/4and I,,_; € R" " ~!istheidentity
matrix. So, we have

n+1

Z g =17
i=1

0 In—l 0
0 0 [flp)+|a
0 O
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=0 17])f(p)+a+b

—Zpt—maxl )+a+b
< Zpl max; (p) + max; (p)/4
= Z Di — max1 D)
as desired. For part (2), we have
[ 0 Infl 1 0
maxi(q) =max, [ |0 0 | flp)+ |a
|1 0 0 b
[ 0 I'n,fl !
> maxy 0 0 | f(p)
L 0 O -
= maxy+1(p)
as desired. [ ]

Lemma5: Letn € Zwithn > Oandletk € {1,...,n}. Also,
let p(n) € R™ such that p(n) > 0 and recursively select

p(i) € gi1(p(i — 1))
foralli =n+1,...,k. Then

n+k

sz n+ k) <sz

and in particular

3 k
-1 > max; (p(n))
i=1

sz 2n) sz

Proof: The proof proceeds by induction; we give the first few
steps and omit the details. From Lemma 4(1), we have
n+1

Zpl(n+ <sz
i=1

Similarly, applying Lemma 4(1) to p(n + 1), we have

- - Inaxl (p(n)).

n+2

Zpl(n—&—Q)

n+1

< Zpi(n +1) — Zmaxl(p(n +1))

n+1

< Zpi(n +1) - % maxs (p(n))

i=1
from Lemma 4(2). Combining these results, we find

n+2

sz TL—|—2 <sz

Proceeding in the usual way by induction, we have

3 k
13 maxi (p(n))

(max; (p(n)) + maxs (p(n))).

n+k

ZpL (n+k) <Zp,
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as desired. In particular, we find that

2n n n
S pien) <3 piln) = 53 mai (p(n)
4
i=1 i=1 i=1
~ Y nm) =23 piln)
4
i=1 i=1
1 n
= 1 Z:Pi(")

|
Lemma 6: Letn € Zwithn > Oandletk € {1,...,n}. Also,
let p € R” such that p > 0. Then
k k n
) > -
Zmaxl (p) = sz
=1 i=1
Proof: By definition, we must have
max+1(p) 2 —— Z max;
i=k+1
Also, since max; (p) > maxj+1(p) foralli € {1,...,k}, then

k
k
f >
;zl max;(p) > p—

Il
s
RES
o~
—
Ms
=
|
B
&
=
~

which implies that
n—k
k

k k n
Z;maxi (p) > o Z;pz
i= i=

as desired. |
Now, we are ready to prove our main result.
Lemma 7: Let n, k € Z with n, k > 0. Also, let p(n) € R”
such that p(n) > 0 and recursively select

p(i) € gi-1(p(i — 1))
k. Then

and hence

forallt=n-+1,...,

n+k
i k) < z
S ninrh <o) Sonon
where ¢ = 343/243 ~ 1.412 is a fixed constant.

Proof: First, we will show that this result holds for
k € {0,...,n}. From Lemma 5, we have

3 k
13 maxi (p(n))

n+k

sz TL—|—]€ <sz



BRETL AND LALL: TESTING STATIC EQUILIBRIUM FOR LEGGED ROBOTS

so from Lemma 6

n+k n 3k n
;pi(n—i— k) < ;pq‘,(n) ~in ;Pi(n)

_ (1 _ iﬁ) i;pi(n).

As a consequence

n+k

> nin+ k) ((nik) me))

i=1

IA
VRS
|
NG S

| 7
N———
-

S

S
 ~
7N
3
+13
o~
N———

[\

IS

S
N——

|

< 2
— 243

where equality holds when
1 _
pj(n):ﬁ;pi(n) forallj =1,...,n

and when k = 5n/9, so we have our result. Now, we consider
the case when k£ > n. Define

k
l{loggnJr J and m=n+k—2n
S0, in fact [, m € Z such that
n+k=2n+m and me{0,...,2'n}.

Then, combining our previous result with Lemma 5, we have

2ln+m

Z D (21n +m)

i=1

2ln/ 2 2lp
l
<e(gntm) Sren

n+k

i=1

IA
o

as desired. [ |

C. Bounding the Number of Iterations Required by PROJECT

Suppose Vinner begins with 1y edges and that the initial dif-
ference in area between YV, ner and Voyter 18

ay = area(youtcr) - area(yinncr)~
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Fig. 12.  Example for which the bound of Theorem 1 holds with equality. The
set ) is dotted and the initial approximation YVouter — Vinner is shaded.

Predicted bound

Actual results

Error €

10*5_

1076

10—7 L L
10° 10* 102 10%

Number of iterations 7

Fig. 13.  Number of iterations 7 required to achieve a given error € with
PROJECT for the example shown in Fig. 12. The bound is tight.

Let o, be the difference in area after k iterations. Then, Lemma

7 tells us that
o 2
ar < c¢ (e}
b <ﬂ0+k) ’

kgm( 1)

So, to achieve o, < € for any desired precision € requires no

more than
CQY
Mo (\/ — = 1)
€

iterations (where ¢ = 343/243 & 1.412 is a fixed constant),
proving Theorem 1. This bound is tight—in particular, equality
holds for the example shown in Figs. 12 and 13, constructed so
that every iteration of PROJECT replaces a single triangle of area
p; with two smaller ones, each of area exactly p; /8.

or equivalently
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APPENDIX II
PROOF OF THEOREM 2

Suppose that {z € Viuner |al 2z = b} defines an edge of
YVinner such that aTy > b so that the area outside this edge
between YViyner and Yoyter 18 initially

ap = area({z € Vouter | a’ 2 > b}).

Then, for any desired precision € > 0, we will show that the
algorithm TEST-SAMPLE terminates after no more than

In (cp/€)
In4

iterations. First, recall that )., is a bounded polygon with
nonempty interior. So, if Vinne, contains N edges, then the
region between Vinner and YV, ter consists of at most N triangles,
one of which will contain the query point y. From Theorem 3
(Appendix I), we know that a single iteration of TEST-SAMPLE
reduces the area of this triangle by at least 75%. Hence, the
triangle containing y after k iterations has area

1\
ap < o 1 .

Since TEST-SAMPLE terminates either when y € Yiner OF
Y & Vouter are satisfied or when oy, < e, then the algorithm
must terminate after a number of iterations

h’l (a()/ﬁ) '

k<
- In4
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