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Summary. Consider a large group of agents chasing a small group of moving targets.
Assume each agent moves at constant speed toward the closest target. This paper
studies the problem of controlling the agents indirectly by specifying the motion of the
targets. In particular, it considers the problem of maintaining a minimum separation
distance between each pair of agents, something that is impossible to do with only one
target. This paper shows that only two targets are necessary to maintain separation
between four agents. It also shows results in simulation to support the conjecture that
only two targets are necessary to maintain separation between any number of agents,
given suitable initial conditions.

1 Introduction

This paper is motivated by recent work in which groups of microorganisms are
used to manipulate small objects [22]. The microorganisms, of the genus Parame-
cium, are controlled by cyclic application of electric fields. A single paramecium
responds to an applied electric field by swimming roughly in the direction from
anode to cathode. This response is known as galvanotaxis [21]. Given a suf-
ficiently accurate model of its dynamics [18], galvanotaxis can be used as a
basis for regulating position or tracking a trajectory with a paramecium [17].
Of course, since all paremecia respond in approximately the same way to an
applied electric field, members of a large group can not be controlled individu-
ally. Instead, the micro-manipulation presented in [22] relies on the tendency of
paramecia to cluster during galvanotaxis. Electric fields are applied to move the
center of this cluster in a heuristic circulation pattern (“collide” and “return”)
in order to push a small object.

A number of questions are raised by this work. For example, is it possible to
stretch or shrink the cluster of paramecia along one dimension? Is it possible to
maintain two or more stable clusters at the same time? More generally, how can
we decide whether an arbitrary configuration of paramecia is reachable, and how
can we construct a control policy to achieve any reachable configuration? Is it
always necessary to use closed-loop control, or is an open-loop (even sensorless)
policy sometimes sufficient? These questions are relevant to a variety of other
biological multi-agent systems in addition to paramecia: for example, guiding
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crowds during emergency egress [15, 19], herding cattle with a robotic sheep-
dog [24, 25] and invisible fences [7], or interacting productively with cockroaches
using a mobile robot [8].

In this paper we consider a simple multi-agent system and focus on the task
of maintaining two or more stable clusters of agents. In our model, there are
a small number of targets whose trajectory we can specify, and a much larger
number of agents that each move at constant speed toward the closest target.
We will prove the following two statements: first, that at least two targets are
necessary to maintain more than one stable cluster of agents; and second, that
only two targets are necessary to maintain four stable clusters of agents. We will
also show results in simulation to support the conjecture that only two targets
are necessary to maintain any number of stable clusters, given suitable initial
conditions.

2 Related Work

2.1 Control of Multi-agent Systems

Distributed control architectures have been applied successfully to a variety of
multi-agent systems, including mobile sensor networks, automated air traffic
control systems, and graphical simulations of flocking birds and schooling fish.
In each case, an implicit assumption is that we can choose how individual agents
respond to each other and to the environment. For example, we might specify
that each agent regulates distance from nearest neighbors (to achieve a cohesive
swarm) [20, 12], updates its heading based on the average heading of its neighbors
(to achieve movement snychronization) [13], or moves toward the circumcenter
of its neighbors (to achieve rendezvous) [9].

In this paper, we are interested in multi-agent systems where the dynamics
of each agent are fixed. As a result, we can only control agents indirectly by
changing external stimuli. This problem has received less attention, mostly in
the context of formation control using virtual leaders [14] (in particular when the
response of each agent is a linear function of its relative state [23]). Other strate-
gies include commanding the location of a formation’s centroid or the variance
of its distribution [1, 11]. It is not well understood how to extend these heuristics
to more general types of group motion.

2.2 Pursuit

The questions raised in the introduction are more general than any particular
multi-agent system. But because of the system model we consider in this paper,
we will be interested here in proving things about the motion of agents that chase
moving targets at constant speed. In fact, the paths followed by such agents have
been studied for over a century in the mathematics literature, where they are
known as curves of pursuit. A classic series of papers by Arthur Bernhart provides
analytic descriptions of these curves in certain cases, such as when the target is
moving along a line or around a circle [2, 3, 5, 4]. Consolidations of this work
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appear in many textbooks on differential equations, such as [10]. In addition to
having obvious military application, pursuit curves have been used for anything
from explaining why ant trails are straight [6] to generating formations of mobile
robots [16]. Of course, most of this past work assumes that agents are chasing
the same targets for all time. In this paper we consider cases in which agents
switch from one target to another. Indeed, we will show that this switching is
necessary in order to maintain more than two stable clusters of agents.

3 Multi-agent System Model

Consider a collection of n agents and m targets. In general, we will assume n
is much bigger than m. Let x1, . . . , xn ∈ R

2 be the position of each agent, and
let z1, . . . , zm ∈ R

2 be the position of each target. All of these variables are
functions of time. In our model, each agent moves at constant velocity toward
the closest target. For simplicity, we will assume this velocity has unit magnitude.
So we can describe the dynamics of each agent i as follows:

dxi

dt
=

zj − xi

‖zj − xi‖
where j = argmink‖zk − xi‖.

Our goal might be to specify a trajectory zj(t) for each target j = 1, . . . , m that
achieves a desired trajectory xi(t) for each agent i = 1, . . . , n. However, it is
clear that if n > m then the multi-agent system is not controllable. As a result,
there are some agent trajectories than cannot be achieved (for example, try
maintaining each agent at a fixed location). Moreover, if n � m, then the multi-
agent system is highly underactuated, so even if there exist target trajectories
that result in desired agent trajectories, it is not at all clear how to find them.
So instead, we restrict our focus to finding a class of target trajectories that
maintains separation between agents.

4 Separation Cannot Be Maintained Using Only One
Target

Assume there is only one target (so m = 1). We can show that for any trajec-
tory z(t) of this target, it is in general impossible to maintain separation between
pairs of agents. Define the squared distance between two agents by

f(xi, xj) = ‖xi − xj‖2 = (xi − xj)T (xi − xj)

First we show that f never increases with time:

1
2

df

dt
= (xi − xj)T (

dxi

dt
− dxj

dt
)

= (xi − xj)T (
z − xi

‖z − xi‖
− z − xj

‖z − xj‖
)

= −((z − xi) − (z − xj))T (
z − xi

‖z − xi‖
− z − xj

‖z − xj‖
).
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Fig. 1. Five agents following one target that moves out and back along the x-axis and
then out and back along the y-axis

Let a = z − xi and b = z − xj . Then it remains to show that

(a − b)T (
a

‖a‖ − b

‖b‖) ≥ 0.

But notice that

(a − b)T (
a

‖a‖ − b

‖b‖) =
‖a‖ + ‖b‖
‖a‖‖b‖ (‖a‖‖b‖ − aT b).

Then since the Cauchy-Schwarz inequality tells us that |aT b| ≤ ‖a‖‖b‖, we have

(a − b)T (
a

‖a‖ − b

‖b‖) ≥ 0

as desired. And in fact, we know equality only holds when a = cb, or equiva-
lently z − xi = c(z − xj), for some scalar c ∈ R. So we can say that all pairs of
agents get closer together (regardless of the target trajectory) unless they are
collinear with the target. Under the mild assumption that there exists Δt > 0
such that for any interval of time [t, t + Δt] we can find δ > 0 and ε < 1 satisfying

|(z − xi)T (z − xj)| ≤ ε‖z − xi‖‖z − xj‖

on a subinterval
[t′, t′ + δ · Δt] ⊂ [t, t + Δt]
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then ‖xi − xj‖ → 0 as t → ∞ for all i, j. In other words, if the target stays
some minimum distance away from the line containing each pair of agents for
a nonzero fraction of time, then all agents approach the same location. As an
example, consider the target trajectory shown in Fig. 1, in which a group of
agents quickly begins to converge.

5 Separation Can Be Maintained between Four Agents
Using Two Targets

Now assume there are two targets (so m = 2). We can show that for certain
trajectories z1(t) and z2(t) of these targets, it is possible to maintain separation
between four agents. In particular, let v > 1 be the constant speed of each target.
Then for any time t > 0 we take s = t mod (4/v) and define

z1(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(vs, 0) if 0 ≤ s ≤ 1/v

(2 − vs, 0) if 1/v < s ≤ 2/v

(0, vs − 2) if 2/v < s ≤ 3/v

(0, 4 − vs) if 3/v < s ≤ 4/v

z2(s) = −z1(s).

So the first target moves from the origin to (1, 0) and back, then from the origin
to (0, 1) and back, all at constant speed v. Similarly, the second target moves
from the origin to (−1, 0) and back, then from the origin to (0, −1) and back,
also at speed v. Both targets repeat these motions for all time.

When this system is simulated, the resulting agent trajectories fall into one of
four limit cycles (see Fig. 2). Each limit cycle has a beautiful hourglass shape,
and lies entirely in one quadrant of the plane. The limit cycles are also symmetric
about the origin, about each axis, and about each 45◦ diagonal. Moreover, these
limit cycles are passively stable—target trajectories need not be modified in
response to perturbations in the trajectory of each agent.

We would like to characterize these limit cycles analytically. Let Δt = 4/v.
For any agent i, we denote the map from xi(kΔt) to xi((k + 1)Δt) by φ(x). We
want to show that there are exactly four fixed points of φ, one in each quadrant.

5.1 Interpretation as Linear Pursuit Curves

A curve of pursuit is the path taken by an agent that chases a moving target by
traveling directly toward it at constant speed. A pursuit curve is called linear
if the target is moving along a straight line. Notice that the target trajectories
we defined above each consist of four straight line segments. As a result, the
trajectory of each agent is a sequence of linear pursuit curves.

The shape of a single linear pursuit curve, as shown in Fig. 3, can be described
analytically [10]. For the purposes of this derivation, let the target’s position
be (0, η) and the agent’s position be (x, y). Assume the target travels at speed v,
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Fig. 2. The agent trajectories resulting from cyclic motion of two targets. These targets
repeatedly move out and back, in opposite directions, along first the x-axis and then
the y-axis. The top image is a close-up of the bottom image.

so η = vt, and that the agent travels at unit speed, so the arc-length s = t. By
definition of arc length we have

(
ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

.

Since we also have
dη

dt
= v

ds

dt

then

1 +
(

dy

dx

)2

=
1
v2

(
dη

dx

)2

. (1)

The agent moves directly toward the target, so

(y − η) =
dy

dx
(x − 0) = x

dy

dx
. (2)

Deriving this expression with respect to x we have

dη

dx
= −x

d2y

dx2 .

Plug this into (1) and we find

1 +
(

dy

dx

)2

=
1
v2

(

−x
d2y

dx2

)2

.

Let p = dy/dx. Then we have

1 + p2 =
1
v2

(

−x
dp

dx

)2
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O
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Fig. 3. A curve of linear pursuit. The target starts from the origin and moves along
the y-axis at constant speed v. The agent starts from (x0, y0) and moves directly toward
the target at unit speed.

which we can write as √
1 + p2 = −x

v

dp

dx
.

This expression is integrable:

− v

∫
dx

x
=

∫
dp

√
1 + p2

⇒
(

x

c2

)−v

=
p +

√
1 + p2

c1

⇒ p =
1
2

(

c1c
v
2x

−v − xv

c1cv
2

)

.

Let a = c1c
v
2 . Then we have

dy

dx
=

1
2

(
a

xv
− xv

a

)

. (3)
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Integrating with respect to x, we find the equation for the curve traced out by
the follower (assuming that v �= 1):

y =
1
2

(
ax1−v

1 − v
− x1+v

a(1 + v)

)

+ b. (4)

The constants a and b are found from initial conditions:

a = xv−1
0

(

y0 −
√

x2
0 + y2

0

)

b =
v

(
−vy0 +

√
x2

0 + y2
0

)

1 − v2 .

Combining (2)-(4), we can write an expression for the time taken to reach a
particular x and y. It is even possible to invert this expression and write x(t)
and y(t) in parametric form. However, the result is not pretty, and how to use it
to find fixed points of φ analytically is still an open question. Moreover, linear
pursuit curves are convex, because

d2y

dx2 = −vx−(v+1)

2a

(
a2 + (xv)2

)

so if x0 > 0 and y0 > 0 then we know a < 0 and hence d2y/dx2 > 0. As a result,
bisection on x allows us to find fixed points of φ and to compute the shape of
associated limit cycles numerically, to any desired precision.

5.2 Each Quadrant Is an Invariant Set

Although we have not yet been able to find the fixed points of φ analytically, we
can show that each quadrant is an invariant set.

First, consider a single linear pursuit curve, where the target moves at con-
stant speed v for a length of time 1/v. If x0 �= 0, then (4) implies that y → ∞
as x → 0, so we know that x(t) �= 0 for all t > 0. Also, if y0 > 0, then (2) im-
plies that dy/dx ≥ 0 (meaning that the agent is moving downward) only so long
as y ≥ η. As a result, y(t) is bounded below by

y(t) ≥ v

v + 1
y0 > 0.

Similarly, if y0 < 1, then (2) implies that dy/dx ≤ 0 (meaning that the agent
is moving upward) for no more than an interval of time Δt = (1 − y0)/v. As a
result, y(t) is bounded above by

y(t) ≤ y0 +
1 − y0

v
< 1

Now, without loss of generality, consider an agent that begins in the upper-right
quadrant. The agent’s trajectory from 0 ≤ t ≤ 1/v can be modeled as a linear
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n = 3 n = 4 n = 5

n = 6 n = 7 n = 8

Fig. 4. Agent trajectories resulting from cyclic motion of two targets, each of which
repeatedly move out and back along n rotating lines

pursuit curve for which x0 < 0 and y0 > 0, where we want to verify x(t) < 0
and y(t) > 0 for t ≤ 1/v. Similarly, the agent’s trajectory from 1/v < t ≤ 2/v
can be modeled as a linear pursuit curve for which x0 > 0 and y0 < 1, where we
want to verify x(t) > 0 and y(t) < 1 for t ≤ 1/v. But we have just proven both
of these results, and the situation for 2/v < t ≤ 4/v is symmetric. Consequently,
we know that the agent remains in the upper-right quadrant for all time. An
identical argument shows that each of the other quadrants is also invariant.

6 Separation Can Be Maintained between Any Number
of Agents Using Two Targets

As in the previous section, we assume there are two targets. But now we conjec-
ture that for certain trajectories z1(t) and z2(t) of these targets, it is possible to
maintain separation between any number of agents (given suitable initial condi-
tions). Although we are still unable to prove or disprove this conjecture, results
in simulation lend strong support. In particular, let n be the number of agents
and let v > 1 be the constant speed of each target. Then for any time t > 0 we
take s = t mod (n/v) and define

z1(s) = vs · (cos(πk/n), sin(πk/n))
z2(s) = −z1(s)
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Fig. 5. Invariant sets for n = 3, given v = 9.4

on each interval
k

v
< s ≤ k + 1

v

for all k = 0, . . . , n − 1. So just as in the previous section, both targets move
repeatedly away from and back toward the origin. But now, the targets move
along n lines (rather than just 2), rotating an angle π/n between each one.

When this system is simulated, the resulting agent trajectories fall into one
of 2n limit cycles (see Fig. 4). Each limit cycle lies entirely in a cone, either centered
on the target trajectories (when n is odd) or between them (when n is even). These
limit cycles show rotational symmetry about the origin. The limit cycles seem to
be passively stable as before, but the basins of attraction are not as well-defined.
In particular, the cone containing each limit cycle is not an invariant set for n > 2
as were the quadrants for n = 2 (see Fig. 5 for an example). As a result, if the
target speed v is too small, the limit cycles disappear. Note that it is possible to
compute the minimum target speed numerically (see Table 1).

Table 1. Minimum Target Speed for Separation

N 2 3 4 5 6 7 8
vmin 1.00 9.37 17.15 30.68 41.45 61.76 75.75

7 Conclusion

When talking about control of multi-agent systems, we usually assume that the
dynamics of individual agents can be designed. In this paper, we were interested
in multi-agent systems where the dynamics of each agent are fixed. Biologi-
cal systems—such as groups of microorganisms, herds of cattle, or crowds of
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people—are perfect examples. These systems are controlled indirectly, by apply-
ing external stimuli. In general, it is not clear how to plan a sequence of stimuli
that cause desired group behavior, nor even how to decide whether a given be-
havior is achievable. In this paper we considered a simple multi-agent system in
which agents chase targets, and focused on the task of maintaining separation
between the agents by specifying the target trajectories. We demonstrated in
simulation that two targets are sufficient to maintain separation between any
number of agents. In future work we hope to address the other questions raised
in the introduction, to consider more realistic dynamic models, and to apply our
work to actual biological and robotic systems.
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