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Abstract— A legged robot walking on uneven terrain can avoid
falling only by applying contact forces with its feet on the ground
that compensate for gravity without causing slip. To plan safe
motions, it is necessary to test this constraint at every posture
explored at each set of foot placements. Since a huge number of
postures may be explored, this test must be as fast as possible.
Existing approaches either search explicitly for contact forces at
each posture, or precompute the support polygon and check that
the robot’s center of mass lies above it. This paper presents a
new algorithm that is faster than either existing approach. This
algorithm is an incremental method of projection, that computes
only enough of the support polygon to decide whether static
equilibrium is possible at each posture. It takes advantage of
information gained testing previous postures in order to test
subsequent postures more quickly.

I. INTRODUCTION

The primary concern of a legged robot walking on uneven

terrain is to avoid falling. Assuming its motion is slow enough

to neglect inertia, the robot must always be able to achieve

static equilibrium—that is, to apply contact forces with its feet

on the ground that compensate for gravity without causing slip.

In some situations, specific gaits can guarantee the satisfaction

of this constraint (for example, walking on level ground or

climbing parallel-sided pipes). However, recent work considers

legged locomotion on irregular and steep terrain [1]–[6], even

free-climbing on vertical rock [7]. In these situations, motion

is explicitly planned and non-gaited, so it is necessary to check

that the robot is in equilibrium at every posture. Because

many postures may be considered, this test must be as fast

as possible. In particular, it is important to quickly invalidate

postures at which there exists no set of contact forces achieving

static equilibrium. In this paper, we present a fast and adap-

tive algorithm that tests necessary conditions for equilibrium.

With some additional assumptions (controllability, joint torque

limits) these conditions are also sufficient.

A. Support polygons
Gravity acts at the robot’s center of mass (CM), the position

of which varies as the robot moves. The properties of each

foot placement determine the range of contact forces possible

without slip. So, for fixed foot placements, static equilibrium

jointly constrains both the contact forces and the CM position.
On flat terrain with point contacts, we have an intuitive

notion of what this constraint means. Simply, the robot’s CM

must lie above the base of its supporting feet. The region

between these supports is called the support polygon. The

vertical prism having this polygon as cross-section is the set

of all CM positions at which static equilibrium is possible.

In other words, if the robot’s posture places its CM over

the support polygon, then we know contact forces exist that

achieve equilibrium without actually having to compute them.

On uneven terrain, however, the shape of the support poly-

gon depends on the properties of each foot-ground contact, and

does not necessarily coincide with the base of the supports. In

particular, for fixed foot placements it may be more costly to

precompute the support polygon than to search explicitly for

a set of contact forces at each CM position.

B. Linear programming and linear projection

A basic model of foot-ground interaction assumes that the

terrain is rigid and that contact occurs at frictional points.

Under this assumption, “no slip” means that each contact

force is restricted to a second-order friction cone, the shape of

which is often approximated by a set of linear inequalities.

Likewise, “compensate for gravity” means that the contact

forces and CM positions satisfy linear force and moment

balance equations. So for fixed foot placements, subject to the

above approximation, the set of jointly feasible contact forces

and CM positions is a polyhedron. The support polygon is the

projection of this polyhedron onto CM-space.

Using linear programming, we can search explicitly for a

set of contact forces that place a particular CM position in

equilibrium without computing the support polygon. A wide

variety of fast algorithms are available, such as the simplex

method, the ellipsoid method, and interior-point methods [8],

[9]. Similarly, using linear projection, we can precompute the

support polygon and thus determine whether it is possible

to place a particular CM position in equilibrium without

computing contact forces. In other words, we can eliminate

forces from the equilibrium constraint. This problem has also

received considerable attention [10], [11].

There is a clear tradeoff between these two approaches when

they are used to test static equilibrium. Linear programming

is very fast, but only answers the question for a single CM

position. Linear projection is slower, but answers the question

for every CM position. So, we might use the former to test a
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small number of CM positions at a fixed set of foot placements,

and the latter to test a large number.

C. Incremental projection

Unfortunately, the number of CM positions that will be

tested at each set of foot placements is initially unknown.

For example, the planner of [7] searches for multi-step free-

climbing motions by randomly sampling robot postures. As

the search evolves, the planner may distribute many samples

at some sets of foot placements, and few at others. So it is

difficult to decide which approach—linear programming or

linear projection—will be most efficient.

In fact, neither approach directly addresses the problem we

want to solve. In particular, we want to determine whether

static equilibrium is possible while computing neither the

contact forces (as in linear programming) nor the support

polygon (as in linear projection). In this paper, we present a

new algorithm that is often faster than either existing approach.

This algorithm is an incremental method of projection, that

computes only enough of the support polygon to determine

the membership of each CM position.

The position of the CM is determined by the robot’s config-

uration, but in this paper we are not concerned with configura-

tion space variables. Indeed, although the set of jointly feasible

contact forces and CM positions is a polyhedron, the set of

jointly feasible contact forces and robot configurations is not.

Our algorithm is designed to test equilibrium at particular CM

positions, not to compute the region of configurations mapping

to CM positions in equilibrium.

II. MODELING THE CONSTRAINT OF STATIC EQUILIBRIUM

A. Configurations and contact

Consider a legged robot walking on uneven terrain in a 3-D

workspace. Suppose the robot contains p revolute joints, so

its configuration space is Q = R
3 × SO(3) × (S1)p and any

placement of the robot in its workspace can be specified by

a configuration q ∈ Q. Some configurations may place the

robot in contact with the terrain. Indeed, we allow the robot

to contact the terrain anywhere with any part of its body.

However, we assume there is a finite set of points r1, . . . , rn

on the surface of its body with which it can apply a force. For

instance, if the robot has n legs, each ri might be a point at

the end of leg i. We define functions ri : Q → R
3 that map

configurations q to points ri(q) in the workspace. We also

assume there is a finite set of points T ⊂ R
3 on the terrain

to which a force can be applied. For instance, these might

correspond to the holds used by a free-climbing robot [7].

For now, we assume there is a unique outward (unit) normal

vector ν at each point in T , given by a mapping ν : T → R
3.

B. Stances and static equilibrium

We call a stance an association of points on the robot with

points on the terrain. We define it by a map s : A → T , where

A ⊂ {1, . . . , n}. At stance s, the point ri on the robot must

remain in contact with the point s(i) on the terrain, for each

index i ∈ dom(s). We allow any other point ri to contact the

terrain even if i /∈ dom(s), but neither restrict this contact nor

use it to avoid falling. The set of all possible stances is

S = { s : A → T | A ⊂ {1, . . . , n} }.
The robot can still change its configuration while maintaining

a fixed stance s ∈ S. However, its configuration must remain

within the following subset of Q:

Qs = { q ∈ Q | ri(q) = s(i) for all i ∈ dom(s) }.
Further, while s is maintained, the robot may only apply

forces at points on the terrain in range(s). For convenience

of notation, we reorder these points as r1, . . . , rN and denote

the corresponding normal vectors by νi = ν(ri). Let xi ∈ R
3

be the reaction force acting on the robot at each point ri

for i = 1, . . . , N . This force can be decomposed into a com-

ponent νT
i xiνi normal to the surface of the terrain (in the

direction νi) and an orthogonal component (I − νiν
T
i )xi tan-

gential to the surface. Define a function c : Q → R
3 mapping

the robot’s configuration q to the position of its CM c(q) (in

general, many different q might map to the same position c).

Assume the robot has mass m and the acceleration due to

gravity is g ∈ R
3. All of these vectors are defined with respect

to a global coordinate system, where g = −‖g‖e3. Then we

say that the robot is in static equilibrium at (s, q) if

N∑
i=1

xi + mg = 0 (1)

N∑
i=1

ri × xi + c(q) × mg = 0 (2)

‖(I − νiν
T
i )xi‖2 ≤ μνT

i xi for all i = 1, . . . , N. (3)

These are convex constraints on the reaction forces x1, . . . , xN

and the CM position c. Constraints (1) and (2) ensure force and

torque balance. Constraint (3) restricts each reaction force to

lie in a friction cone of half-angle φ = tan−1 μ, where μ
is the static coefficient of friction. Finally, notice that these

constraints depend neither on the particular mapping s, nor

explicitly on q. Rather, they depend only on the set range(s)
and the CM position c(q).

C. Paths and planning

Static equilibrium imposes a distinct structure on config-

uration space—in particular, a decomposition according to

stance. Define the feasible space at a stance as the subset

of configurations Fs ⊂ Qs at which x1, . . . , xN exist such

that (1)-(3) are satisfied. Feasible spaces Fs and Fs′ at two

different stances s and s′ might intersect. If the robot moves

to a configuration q ∈ Fs ∩ Fs′ , it can take a step from one

stance to the other. To walk across uneven terrain, the robot

must take a sequence of steps, which we call a multi-step
motion. To plan such a motion, we would like to construct a

graph with vertex set

V =

{
U ⊂ Q

∣∣∣∣ U is a connected component of Fs

for some s ∈ S

}
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where there is an edge between U1,U2 ∈ V if U1 ∩ U2 �= ∅.

However, constructing this graph is hard. Even computing

the exact shape of a single connected component U ⊂ V
may take prohibitive time. For this reason, the Probabilistic-

Roadmap (PRM) approach [12], or one of its variants [13],

is often used to represent each Fs. A PRM planner captures

connectivity by a network of local paths joining sampled

configurations. Its speed derives from the assumption that

checking whether q ∈ Fs can be done quickly, even if com-

puting Fs would take prohibitive time. So, it is important that

the test of static equilibrium be as fast as possible.

The robot may need to satisfy constraints other than static

equilibrium as well: for example, collision and self-collision,

joint-angle limits, joint-torque limits, and controllability. These

constraints further restrict configurations in Fs. However,

some of them (such as joint-torque limits) are costly to check.

By testing static equilibrium first, we can quickly eliminate

many infeasible configurations q /∈ Fs.

D. Approximating the friction cone

The constraints (1)-(3) are jointly convex in x1, . . . , xN

and c. In particular, (1)-(2) are linear and (3) is a second-

order cone constraint. Hence, it is possible to test static equi-

librium (given c, to search for x1, . . . , xN that satisfy (1)-(3))

by solving a second-order cone program (SOCP) [14]–[16].

However, in practice (3) is often approximated by a polyhedral

cone (that is, by linear constraints). This formulation has three

advantages: first, it can be evaluated more quickly; second, it

avoids representational problems on non-smooth terrain (we

can easily relax the assumption of unique νi); and third, it

allows the variables xi to be eliminated (quantifier elimination

is difficult for second-order cone constraints, since the result

may not be a second-order cone). We will use the polyhedral

approximation for now, returning to this issue in Section VI.

We construct a full QR factorization of each νi as

νi = Qi

⎡
⎣Ri

0
0

⎤
⎦

where Qi ∈ R
3×3 is orthogonal and Ri ∈ R is Ri = ‖νi‖ = 1.

For each i, we approximate the second-order cone

Cicecream = { z ∈ R
3 | ‖(I − νiν

T
i )z‖2 ≤ μνT

i z }
by the four-sided polyhedral cone

Cpoly = { z ∈ R
3 | WQT

i z 
 0 }
where

W =

⎡
⎢⎢⎣
−μ −1 0
−μ 1 0
−μ 0 −1
−μ 0 1

⎤
⎥⎥⎦ .

To see that this is a reasonable approximation, notice that

Cicecream = {Qiz ∈ R
3 | z2

2 + z2
3 ≤ μz2

1 and z1 ≥ 0 }
and that

Cpoly = {Qiz ∈ R
3 | |z2| ≤ μz1 and |z3| ≤ μz1 }.

As defined, Cpoly is an outer approximation to Cicecream. By

adjusting the parameter μ, we could construct an inner approx-

imation instead. Similarly, we could make the approximation

more accurate by increasing the number of facets of Cpoly

(equivalently, by increasing the number of rows of W ). The

end result is to replace (3) by

WQT
i xi 
 0 for all i = 1, . . . , N. (4)

E. Defining a coordinate system

Here, we put (1), (2), and (4) in a form suitable for

computation. First, notice that

c × mg = m‖g‖
⎡
⎣−c2

c1

0

⎤
⎦

so constraints (1)-(2) do not depend on c3. Hence, we define

y = Pc

where

P =
[
1 0 0
0 1 0

]
.

For each z ∈ R
3 we define a linear map T (z) : R

3 → R
3 such

that T (z)x = z × x for all x ∈ R
3. So (1), (2), and (4) become

N∑
i=1

xi + mg = 0 (5)

N∑
i=1

T (ri)xi + T (mg)PT y = 0 (6)

WQT
i xi 
 0 for all i = 1, . . . , N (7)

We now have the following simple conditions: x1, . . . , xN and

c satisfy (1), (2), and (4) if and only if

A1x + A2y 
 t

B1x + B2y = u
(8)

where

x =

⎡
⎢⎣

x1

...

xN

⎤
⎥⎦ , y = Pc,

A1 = diag(W1Q
T
1 , . . . ,WNQT

N ), A2 = 0, t = 0,

B1 =
[

I . . . I
T (r1) . . . T (rN )

]
, B2 =

[
0

T (mg)PT

]
, u=

[−mg
0

]
.

F. Problem statement

From (8), the set of all feasible reaction forces x and CM

positions y at a fixed stance is the polyhedron

X = {x ∈ R
3N , y ∈ R

2 | A1x + A2y 
 t, B1x + B2y = u }.
Likewise, the support polygon (that is, the set of all feasible

CM positions y at a fixed stance) is the projection Y of the

polyhedron X onto y-space, namely

Y = { y ∈ R
2 | ∃x ∈ R

3N such that (x, y) ∈ X }.
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The problem of testing static equilibrium at a given CM

position y is the problem of determining whether or not there

exists an x such that (x, y) ∈ X . Equivalently, it is the problem

of determining whether y ∈ Y .

During multi-step search, an unknown number of configu-

rations qi will be sampled at each stance s ∈ S. We want to

check that the robot is in static equilibrium at each (s, qi).
The stance s defines the polyhedron X and its projection Y ,

and each qi defines a point yi = Pc(qi). So our problem is to

test the membership of an unknown number of points in the

projection of a polyhedron.

III. LINEAR PROGRAMMING AND LINEAR PROJECTION

A. Linear programming

Finding a point x at a given yi such that (x, yi) ∈ X can be

done by solving the linear program (LP) feasibility problem

find x

subject to A1x + A2y 
 t

B1x + B2y = u

y = yi.

(9)

A variety of algorithms are available to solve this LP [8]. In

general, these can take time polynomial in the dimension of

x and the number of constraints.

B. Linear projection

Finding the set Y is a problem of linear projection. Since

X is a polyhedron, its projection Y will also be a polyhedron.

If we precompute a new set of linear inequalities such that

Y = { y ∈ R
2 | Aprojy 
 bproj }

then to test whether yi ∈ Y we simply verify Aprojyi 
 bproj.

But there is an inherent computational complexity associated

with linear projection, since the number of inequalities defin-

ing the projection Y might be exponential in the dimension-

ality 3N + 2 of the polyhedron X . Numerical stability is also

an issue, and it is difficult to know when linear projection will

be easy or hard. So in general, precomputing Y is slower than

solving (9), although checking afterward if yi ∈ Y is faster.

Most available algorithms for linear projection are variants

of elimination or enumeration. Elimination methods con-

struct Y directly by computing valid inequalities (positive

combinations of the linear inequalities defining X ) that “elim-

inate” the variables x one by one (see [17] for a survey).

Enumeration methods construct Y indirectly by first “enumer-

ating” all vertices of X , which are then easily projected onto

y-space [18]–[22]. In fact, due to a correspondence between

linear inequalities and vertices (one can be represented as

the other in a dual space), algorithms for elimination and

enumeration are in some sense mathematically equivalent.

C. Application to multi-step planning for legged robots

The configuration space of a legged robot has a distinct

structure (Section II). Each stance s ∈ S is associated with a

different support polygon and a different feasible space Fs,

which is often explored using a sample-based planner (such
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Support polygon

Sample distribution
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Fig. 1. Example distribution of CM positions at a fixed stance for a free-
climbing robot. Each CM position corresponds to a sampled posture.
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Fig. 2. The total amount of time required to test static equilibrium at a
variable number of sampled postures at the stance shown in Fig. 1.

as PRM). It is common to sample over a hundred thousand

configurations during a multi-step search. Further, we might

generate many samples at some stances, and few at others.

Either linear programming or linear projection can be used

to test static equilibrium, but the time taken by each method

depends entirely on this unknown number of samples.

For example, consider the four-limbed, free-climbing robot

of [7] at the stance s shown in Fig. 1. It needs to determine

which holds it can reach, so it can decide where to step next.

Some number of configurations in Qs are being sampled by

a PRM algorithm, in this case about seventy. The CM position

is computed for each configuration—some points lie inside,

and some outside, the support polygon (although the planner

does not yet know which). As is typical, the distribution of CM

positions is quite narrow, although the distribution of sampled

configurations in joint space might have been wide.

In this example 70 configurations are sampled, but this

number may vary considerably. Fig. 2 shows the time it

takes to test a variable number of configurations for static

equilibrium (that is, to test whether a variable number of CM

positions lie over the support polygon). Linear programming is

fast for a small number of samples but slow for a large number.

Linear projection is the opposite. Both methods perform about

the same—relatively slowly—for the number of samples in

Fig. 1. These results do not depend on the sample distribution.
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D. Implications

As the above example indicates, neither linear programming

nor linear projection directly addresses the problem of testing

static equilibrium—that is, of testing the membership of points

yi in the projection of a polyhedron X . To do so, the

former finds x such that (x, yi) ∈ X , while the latter finds the

projection Y of X onto y-space and checks that yi ∈ Y . Both

approaches generate useless information—neither a particular

x nor the exact shape of Y are needed.

More importantly, both approaches discard useful informa-

tion. For example, if a point yi /∈ Y , most LP algorithms

generate a separating hyperplane as proof. This hyperplane

separates many other points from Y as well—in fact, it defines

a halfspace that contains Y (where μ and λ are dual variables):

{ y ∈ R
2 | (

λT A2 + μT B2

)
y ≤ (

λT b + μT d
) } ⊃ Y.

If any other point yj is outside this halfspace, we know

immediately that it is outside Y , without solving another LP.

Similarly, linear projection discards information about the

sample distribution. Rather than compute all of Y , it is only

necessary to compute enough of Y to distinguish between

feasible and infeasible sampled points. The evolving sample

distribution suggests which part of Y should be computed.

IV. INCREMENTAL PROJECTION

Here, we present a fast algorithm to test static equilibrium.

It is an incremental method of projection that computes only

enough of the support polygon to determine the membership

of each CM position.

A. Preliminaries

Let Y ⊂ R
n be a closed and bounded polyhedron. A face of

Y is any set of the form Y ∩ { z ∈ R
n | aT z = b } for a ∈ R

n

and b ∈ R such that aT z ≤ b for all z ∈ Y . If such a face

is nonempty and a �= 0, we call the set { z ∈ R
n | aT z ≤ b }

a supporting halfspace. A face is called proper if it is not

identically Y (in 2-D, for example, vertices and edges are

proper faces). It is clear that Y has a finite number of proper

faces. We define the support function SY : R
n → R of Y by

SY(a) = sup{ aT z | z ∈ Y }.
Using the support function, we define a map fY : R

n → R
n

from normal vectors to nonempty faces of Y by

fY(a) = { z ∈ Y | aT z = SY(a) }.
The face fY(a) is proper for any a �= 0. We also define a map

hY : R
n → R

n from normal vectors to supporting halfspaces:

hY(a) = { z ∈ R
n | aT z ≤ SY(a) }.

Note that fY(a) ⊂ hY(a) for any a ∈ R
n.

B. Algorithm

Rather than precompute the projection Y , our incre-

mental projection algorithm TEST-SAMPLE (Fig. 3) main-

tains inner and outer polyhedral approximations Yinner ⊂ Y
and Youter ⊃ Y , respectively. Rather than test explicitly

TEST-SAMPLE(y)
1 while y /∈ Yinner and y ∈ Youter do
2 pick a ∈ R

n and b ∈ R such that aT y > b
and aT z ≤ b for all z ∈ Yinner

3 Youter ← Youter ∩ hY(a)
4 pick v ∈ fY(a)
5 Yinner ← conv(Yinner ∪ {v})
6 if y ∈ Yinner then
7 return TRUE

8 else
9 return FALSE

Fig. 3. The incremental projection algorithm.

whether y ∈ Y , the algorithm loops until either y ∈ Yinner

(implying y ∈ Y) or y /∈ Youter (implying y /∈ Y).

Initially, Yinner = ∅ and Youter = R
n. At each iteration, we

pick a hyperplane strictly separating the query point y from the

inner approximation Yinner (Line 2). This hyperplane has some

normal vector a. We shrink Youter by intersecting it with the

supporting halfspace defined by a (Line 3). We grow Yinner by

taking its convex hull with some point in the face defined by a
(Lines 4-5). After TEST-SAMPLE terminates, we store Yinner

and Youter to make subsequent evaluations faster. In particular,

the algorithm may terminate on Line 1 without iteration.

Fig. 5 shows one iteration of TEST-SAMPLE for our imple-

mentation of the algorithm in 2-D. However, before addressing

issues of computation (see Section IV-E), we will first show

that TEST-SAMPLE converges for arbitrary n.

C. Proof of convergence

Theorem 1: Suppose Y and Yinner are closed and bounded

polyhedra such that Yinner ⊂ Y . Let y /∈ Yinner. Then there

exist a ∈ R
n and b ∈ R such that aT y > b and aT z ≤ b for

all z ∈ Yinner. Also, for any such a, the following are true:

(i) there exists v ∈ fY(a),
(ii) either fY(a) ∩ Yinner = ∅ or y /∈ hY(a) or both.

Proof: The existence of a and b follows from the Hahn-

Banach Theorem. Statement (i) holds since fY(a) �= ∅ for any

a ∈ R
n. To show (ii), we will suppose fY(a) ∩ Yinner �= ∅ and

prove that y /∈ hY(a). Assume there exists w ∈ Yinner ∩ fY(a).
Then aT w = aT z for all z ∈ fY(a) (because w ∈ fY(a))
and aT w ≤ b (because w ∈ Yinner). Therefore aT z ≤ b for all

z ∈ fY(a). Also, for all x ∈ hY(a) and z ∈ fY(a) we know

by definition that aT x ≤ aT z. So aT x ≤ b for all x ∈ hY(a)
while aT y > b, and thus y /∈ hY(a).

Theorem 2: Suppose Y is a closed and bounded polyhe-

dron. Then for any sequence of choices of a, b, and v, TEST-

SAMPLE terminates after a finite number of iterations.

Proof: Let I be the set of all nonempty proper

faces of Y that intersect Yinner. Theorem 1 implies that at

each iteration (where necessarily y /∈ Yinner), for any choice

of a and b either TEST-SAMPLE will terminate (because

y /∈ hY(a) and hence y /∈ Youter ∩ hY(a)) or a new proper

face will be added to I (because Yinner ∩ fY(a) = ∅ but

1113



conv(Yinner ∪ {v}) ∩ fY(a) �= ∅ for any choice of v ∈ fY(a)).
Since Y has a finite number of proper faces, TEST-SAMPLE

must terminate after a finite number of iterations.

D. Implementation

Although we have shown that TEST-SAMPLE converges, we

have not specified how each line of the algorithm is computed.

One method proceeds as follows. At each iteration, we store

Youter as a list of halfspaces and Yinner as a list of vertices. To

test whether y ∈ Youter we check that y is contained in every

halfspace of Youter. To test whether y /∈ Yinner we check that

the following LP is feasible:

find a, b

subject to yT a > b

zT a ≤ b for every vertex z ∈ Yinner.

(10)

If so, we pick a and b as any solution to (10). Then, when Y
is a polyhedron, we solve the following LP to pick v (recall

that we only have an explicit description of X , not Y):

maximize aT z

subject to A1x + A2z 
 t

B1x + B2z = u.

(11)

Any optimal solution xopt, zopt of (11) satisfies zopt ∈ fY(a),
so we take v = zopt. Also, notice that SY(a) = aT v
for any v ∈ fY(a), so having solved (11) we simply

take hY(a) = { z ∈ R
n | aT z ≤ aT v }. We update Yinner by

adding v to the list of vertices, and update Youter by adding

hY(a) to the list of halfspaces.

E. Refinements for implementation in 2-D

The performance of TEST-SAMPLE depends on the data

structure used to store Yinner and Youter. These sets must be

represented in a form that makes it easy to test the member-

ship of query points, or it would not be useful to construct

them. The challenge with Yinner is to convert its nominal

representation as the convex hull of points to a more conve-

nient representation as the intersection of halfspaces (testing

membership in the former requires the solution of (10), an LP,

while in the latter requires only the evaluation of inequalities).

The challenge with Youter is to limit or remove redundant

halfspaces (otherwise, testing membership can become slow

after many iterations of TEST-SAMPLE). In general, both of

these operations are computationally expensive.

In 2-D, however, we can make several refinements to our

implementation of TEST-SAMPLE. First, we modify Lines 1-2:

• It is easy to test y /∈ Yinner and to pick a and b. In 2-D it is

straightforward to convert between vertex and halfspace

representations. Assuming that Yinner already contains at

least three non-collinear vertices, we construct a halfs-

pace representation by sorting these vertices in counter-

clockwise order and computing the edge between each

consecutive pair (using the subroutine HALFSPACE, in

Fig. 4). Instead of solving (10), we check if there is a

violated inequality in this halfspace representation. If one

TEST-SAMPLE-2D(y)
1 while i ≤ length(v) do
2 if aT

i y ≤ bi then
3 i ← i + 1
4 else
5 if ((κi = TRUE) or (aT

i y > bi)
or (aT

i+1y > bi+1)) then
6 return FALSE

7 else
8 v0 ← SOLVE-LP(ai)
9 (a0, b0) ← (ai, a

T
i v0)

10 if b0 = bi then
11 κi ← TRUE

12 else
13 (ai, bi) ← HALFSPACE(vi, v0)
14 (a0, b0) ← HALFSPACE(v0, vi+1)
15 INSERT(v0, a0, b0, a0, b0, FALSE, i + 1)
16 return TRUE

SOLVE-LP(a)
1 solve the following linear program:

maximize aT z
subject to A1x + A2z 
 t

B1x + B2z = u
2 return the optimal solution z0

HALFSPACE(z1, z2)

1 a ←
[−eT

2 (z1 − z2)
eT
1 (z1 − z2)

]
2 b ← aT z1

3 return (a, b)
INSERT(v0, a0, b0, a0, b0, κ0, i)
1 insert v0, a0, b0, a0, b0, and κ0 into lists

v, a, b, a, b, and κ, respectively, at index i

Fig. 4. The incremental projection algorithm for 2-D.

exists, it separates y from Yinner, both proving y /∈ Yinner

and defining a valid choice of a and b.

• It is easy to test y ∈ Youter. The violated inequality

defined by a and b corresponds to an edge of Yinner

containing two consecutive vertices. By construction,

each vertex is on the boundary of Y and is incident to

at least one halfspace of Youter. Let H be the intersection

of all such halfspaces. Then it is clear that y ∈ Youter if

and only if y ∈ H (for example, see Fig. 5). So it is only

necessary to test the membership of y in a subset of the

halfspaces defining Youter.

Of course, even in 2-D we need to solve the LP (11), in 3N + 2
dimensions, to pick v ∈ fY(a) in Line 4. But we can modify

Lines 3 and 5 to make it easier to update Yinner and Youter:

• It is easy to update Yinner. We would like to maintain

our halfspace representation of Yinner, rather than recom-

pute it at every iteration. Notice that for any z ∈ R
2,

if z /∈ Yinner and z ∈ Youter then z violates exactly one
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inequality in the halfspace representation. In particular,

if we pick v ∈ fY(a) (where necessarily v ∈ Youter) such

that v /∈ Yinner, then v violates only the inequality defined

by a and b. So we update Yinner quickly by subdividing

the corresponding edge. In fact, any further iteration of

TEST-SAMPLE results only in further subdivision of this

edge, and so is implemented as a recursion.

• It is easy to limit the size of Youter. At every iteration of

TEST-SAMPLE, we generate a halfspace hY(a) of Youter

that is incident to a vertex v ∈ fY(a) of Yinner. In general,

every time we pick v ∈ fY(a) such that v ∈ Yinner, then

we add another halfspace incident to the same vertex.

We showed in Section IV-C that this can only happen

once per query, but over many queries we might generate

many halfspaces incident to the same vertex, slowing the

test of y ∈ Youter. But because of our choice of a and b,

if v ∈ Yinner then hY(a) = { z ∈ R
2 | aT z ≤ b }. Hence,

we know the edge of Yinner defined by a and b is also

an edge of Y . By marking this edge as “exact,” we can

update Youter implicitly, so each vertex in Yinner remains

associated with only one supporting halfspace in Youter.

Based on the above refinements, we can use a simple data

structure to store Yinner and Youter. We represent Yinner by

a list of points vi ordered counter-clockwise and by a list

of halfspaces { z ∈ R
2 | aT

i z ≤ bi }, where the halfspace i is

incident to the points vi and vi+1. We represent Youter by a

list of halfspaces { z ∈ R
2 | aT

i z ≤ bi }, where the halfspace i
is incident to the point vi. We also define the following set of

boolean variables to indicate when edges of Yinner are exact:

κi =

{
TRUE if hY(ai) = { z ∈ R

2 | aT
i z ≤ bi },

FALSE otherwise.

Our implementation is described by the algorithm TEST-

SAMPLE-2D (Fig. 4). A single iteration is shown in Fig. 5.

V. EXPERIMENTAL RESULTS

Our incremental projection algorithm reduces the time re-

quired to test static equilibrium at sampled configurations for

a fixed stance, because it takes advantage of the distribution of

previously tested configurations to guide the construction of

inner and outer approximations to the support polygon. To see

this, we first compare incremental projection to the methods

of linear programming and linear projection for the example

in Fig. 1 (Section III-C). Fig. 6 shows the time taken by

each method to test a variable number of randomly distributed

samples (averaged over many runs). Linear programming is

fast for small numbers of samples but slow for large numbers;

linear projection is the opposite. Incremental projection per-

forms better than either approach for reasonable numbers of

samples. In particular, it performs much better for 70 samples,

seen in practice. Of course, if the sample distribution requires

it, incremental projection may eventually have to compute the

entire support polygon—then, its performance would be the

same as linear projection. This would occur, for example, if

samples are distributed at every vertex of the support polygon,

or if samples are distributed uniformly. Although it is intuitive

Yinner

vi+1

y

āi+1 Youter
āi

vi

ai

(a)

ā0

v0

(b)

Fig. 5. One iteration of incremental projection in 2-D.
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Fig. 6. The total amount of time required to test a variable number of
randomly distributed samples.

to compare these algorithms with respect to the number of

samples, it is really the sample distribution that is important.

Incremental projection also allows a greater amount of

complexity in the projection Y (likewise, in the polyhedron X )

at little additional computational cost. This capability might

be used to model other more complicated types of contact

with additional constraints, or to model frictional point contact

with greater accuracy (for example, increasing the fidelity of

the polyhedral friction cone approximation). Fig. 7 shows the

total time required to test 100 randomly distributed samples

in projections of increasing complexity. Incremental projection
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Fig. 7. The total amount of time required to test 100 randomly distributed
samples as the complexity of the projection Y increases.

TABLE I

TIME (SECONDS) TO TEST STATIC EQUILIBRIUM WHILE PLANNING

Size of problem

Method 1-step 30-step 2000-step

Linear programming 0.093 9.48 287

Linear projection 0.061 2.94 167

Incremental projection 0.040 1.82 64

remains fast even as complexity increases.

Finally, incremental projection makes multi-step planning

faster. Table I shows results for three example planning prob-

lems. The first is the single step considered in Figs. 1 and 6.

Incremental projection is about 33% faster than linear pro-

jection, and more than 50% faster than linear programming.

The second is a multi-step search in a terrain with 7 potential

foot placements, requiring the exploration of 30 steps. Again,

the incremental projection algorithm is about 33% faster than

linear projection (saving about a second of computation time),

and is much faster than linear programming. The third is a

multi-step search in terrain with 100 potential foot placements,

requiring the exploration of more than 2000 steps. Here,

incremental projection is over 50% faster than linear projection

(saving almost two minutes). The advantage of using this

algorithm grows with the complexity of the planning problem

because most steps are explored only briefly (that is, with a

relatively small number of samples). In each case, the amount

of time saved represents about 5-10% of total planning time.

VI. CONCLUSION

In this paper we presented a new algorithm to test static

equilibrium, in particular to test the membership of points

in the projection of a polyhedron. Incremental projection is

often faster than both linear programming and linear projection

because it uses information (acquired after testing multiple

sample points) that both previous approaches discard. For

example, if a sample point is outside the projection, most

LP algorithms generate a separating hyperplane as proof.

Incremental projection uses such hyperplanes to define pieces

of an outer approximation that might allow other infeasible

sample points to be eliminated without further computation.

Likewise, linear projection disregards future information about

the distribution of sample points. Rather than compute the

entire projection, our incremental algorithm computes only

enough to distinguish between feasible and infeasible samples.
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