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Abstract 

This paper presents a general framework for  planning 
the quasi-static motion of a three-limbed climbing robot 
in vertical natural terrain. The problem is to generate a 
sequence of, continuous one-step motions between 
consecutive holds that will allow the robot to reach a 
particular goal hold. A derailed algorithm is presented to 
compute a one-step motion considering the equilibrium 
constraint only. The overall framework combines this 
local planner with a heuristic search technique to 
generate a complete plan. An online implementation of 
the algorithm is demonstrated in simulation. 

1 Introduction 

The work presented in this paper is part of an effort to 
develop critical technologies that will enable the design 
and implementation of an autonomous robot able to climb 
vertical natural terrain. To our knowledge, this capability 
has not been demonstrated previously for robotic systems. 
Prior approaches have dealt with artificial terrain, either 
using special “grasps” (e.g., pegs, magnets) adapted to the 
terrain’s surface or exploiting specific properties or 
features ofthe terrain (e.g., ducts andpipes) [I-121. 

Developing this capability will further our understand- 
ing of how humans perform such complex tasks as 
climbing and scrambling in mgged terrain. This may 
prove useful in the future development of sophisticated 
robotic systems that will either aid or replace humans in 
the performance of aggressive tasks in difficult terrain. 
Examples include robotic systems for such military and 
civilian uses as search-and-rescue, reconnaissance, and 
planetary exploration. 

Many issues need to be addressed before real robots can 
climb real, vertical natural terrain. This paper presents 
preliminary work in the area of motion planning. A 
general framework for climbing robots is presented and 
this framework is instantiated to compute climbing 
motions of the three-limbed robot shown in Figure 1. 
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Fig I. A three-limbed climbing robot moving vertically on natural 
surfaces. 

1.1 Problem Statement 

The robot of Figure 1 consists of three limbs. Each limb 
has two joints, one located at the center of the robot 
(called the pelvis) and one at the midpoint of the limb. 
Motion is assumed to be quasi-static (as is usually the 
case in human climbing) and to occur in a vertical plane, 
with gravity. The low complexity of this robot’s kine- 
matics makes it suitable for studying the planning of 
climbing motions. 

The terrain is modeled as  a vertical plane to which is 
attached a collection of small, angled, flat surfaces, called 
“holds,” that are arbitrarily distributed. The endpoint of 
each robot limb can push or pull at a single point on each 
hold, exploiting friction to avoid sliding. 

A climbing motion of the robot consists of successive 
steps. Between any two consecutive steps, all three limb 
endpoints achieve contact with distinct holds. During each 
step, one limb moves from one hold to another, while the 
other two endpoints remain fixed. The robot can use the 
degrees of freedom in the linkage formed by the corre- 
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sponding two limbs to maintain quasi-static equilibrium 
and to avoid sliding on either of the two supporting holds. 
In addition, during a step, the torque at any joint should 
not exceed the actuator limits and the limbs should not 
collide with one another. These constraints define the 
feasible subset of the configuration space of the robot in 
each step. A path in this subset defines a one-step motion. 

The overall planning problem is the following: given a 
model of the terrain, an initial robot configuration where 
it rests on a pair of holds, and a goal hold, generate a 
series of one-step motions that will allow the robot to 
move in quasi-static equilibrium from the initial configu- 
ration to an end configuration where one limb endpoint is 
in contact with the goal hold. 

This paper presents an algorithm to compute a one-step 
motion considering the equilibrium constraint only. 
Adding the actuator-limit and self-collision constraints, 
though still undone, does not seem to’raise major 
difficulties. The overall planner combines this “local 
planner” with a heuristic search technique to determine a 
sequence of holds from the initial configuration to the 
goal hold. 

1.2 Related Work 

The search space, which will he described in Section 3, 
is a hybrid space, involving both continuous and discrete 
actions. Many different methods are available for motion 
planning through continuous spaces, including cell 
decomposition, potential field, and roadmap algorithms 
[13]. Discrete actions can be included in these methods 
directly, such as at the level of node expansion in a 
roadmap algorithm, but this approach generally leads to a 
slow implementation that is specific to a particular 
system. 

Previous work on motion planning for legged robots 
has developed tools for addressing these hybrid search 
spaces for some’systems. This work can he categorized by 
whether or not the planning is done offline, in order to 
generate a reactive gait, or online, in order to allow non- 
gaited motion specific to a sensed environment. 

Gaited planners generate a predefined walking pattern 
offline, assuming a regular environment. This pattern is 
used with a set of heuristics or behaviors to control the 
robot online based on current sensor input. Gaited 
planning was used by 12, 111, for example, to design 
patterns for climbing pipes and ducts. Other methods such 
as [14] are based on the notion of support triangles for 
maintaining equilibrium. Stability criteria such as the 
zero-moment-point have been used to design optimal 
walking gaits [15]. Dynamic gaiting and bounding also 
have been demonstrated [16-IS]. Recent work [19, 201 
has attempted to provide unifying mathematical tools for 
gait generation. Each of these planning algorithms would 
he very effective in portions of a natural climbing 
environment with a sustained feature such as a long 

vertical crack of nearly uniform width. However, 
something more is needed for irregular environments such 
as the one studied in this paper, where the surfaces on 
which the robot climbs are angled and placed arbitrarily. 

Non-gaited planners use sensed information about the 
environment to create feasible motion plans online. Most 
previous work on non-gaited motion planning for legged 
robots has focused on a particular system model, the 
spider robot. The limbs of a spider robot are assumed to 
he massless, which leads to elegant representations of 
their free space for quasi-static motion based on support 
triangles [21-231. These methods have been extended to 
planning dynamic motions over rough terrain [24, 251. 
The analysis used in these methods breaks down, 
however, when considering robots that do not satisfy the 
spider-robot assumption. For example, additional 
techniques were necessaly in [26, 271 to plan non-gaited 
walking motions for humanoids, which clearly do not 
satisfy this assumption. To address the high number of 
degrees of freedom and the high branching factor of the 
discrete search through possible footsteps, these tech- 
niques were based on heuristic discretization and search 
algorithms. This paper considers a robot with fewer 
degrees of freedom in a more structured search space 
where it is possible to achieve much better performance 
than with these heuristic methods. Similar issues were 
addressed by [28] in designing a motion-planning 
algorithm for character animation, although this algorithm 
was meant to create “realistic,” rather than strictly 
feasible, motion. 

There is also some similarity between non-gaited 
motion planning for legged locomotion and for grasping 
and robotic manipulation, particularly in the concept of a 
manipulation graph [29-321. Both types of planning 
require making discrete and continuous choices. 

1.3 Contribution 

The major contribution of this paper is a detailed 
analysis of one-step motion for the three-limbed climbing 
robot. 

First, the propehies of the continuous configurations at 
which the robot is in equilibrium are established. These 
properties are used to define the feasible set of robot 
configurations at each pair of holds. In particular, it is 
shown that the connectivity of the four-dimensional 
continuous feasible space of the robot can be preserved 
when planning in a two-dimensional subspace. This result 
reduces the complexity of the one-step planning problem 
and leads to a fast, online implementation. 

Then, an overall framework is presented for planning a 
sequence of one-step.motions from a specific configura- 
tion on an initial pair of holds to a goal hold. Heuristic 
methods are used to guide this discrete search, based on 
observation of the way in which human climbers plan 
their motions. 
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2 Notation and Terminology 

Figure 2 illustrates the notation and terms used in the 
rest of this paper to describe the three-limbed robot. 

The robot consists of three identical limbs meeting at 
the pelvis,  whose location is denoted by (xc#c). Each 
limb consists of two segments and has two revolute joints, 
one located at the pelvis, the other between the two 
segments. For simplicity, the six limb segments are 
assumed to have equal mass and length L ,  hut this 
assumption can he relaxed easily. In total, the robot’s 
configuration space has six dimensions (two for each 
limb). It is assumed that the revolute joints are not limited 
by any internal mechanical stops. 

In Figure 2, the endpoints of the two limbs of the robot 
are at holds 1 and 2 located at (xl$l) and (x2#z), while the 
third limb is moving. The two-limbed linkage between 
(x ls l )  and ( ~ 2 8 ~ )  is called the contact chain and the other 
Limb is the free limb. The constraint that two limb 
endpoints be at (xl&) and (xZg2) reduces the set of 
possible configurations of the robot to a four-dimensional 
subspace, which is denoted by C(ij1, since both the 
contact chain and the free limb now have two degrees of 
freedom. Any motion of the robot maintaining these two 
contacts will occur in C(ig) .  The configuration of the 
robot in C ( i j )  can be uniquely specified by the angles 
(e,,&) of the free limb, the position (xc,yc) of the pelvis, 
and two additional binary variables identifying the 
direction of the knee bends in the contact chain (see 
Figure 6(a)). 

The location of the robot’s center of mass (CM), which 
is not shown, is (XCMSCM). The location of the CM’s of 
the contact chain and the free limb are ( X C M , ~ ~ ~ ~ ~ # C M , ~ ~ ~ ~ ~ )  

and ( ~ ~ ~ f i ~ ~ a ~ ~ f i . ~ ) ,  respectively. 
Friction at each hold is modeled using Coulomb’s law. 

More precisely, each hold (xls l )  and (xZ&) exerts a 
reaction force on the corresponding limb endpoint. 
According to Coulomb’s law, this force must point into a 
friction cone to avoid slipping (see Figure 3). The 
orientation $I and h of each cone is normal to each hold, 
and the half-angle AQ, and Ah of each cone is determined 
by each hold‘s coefficient of friction. For the robot to he 
in quasi-static equilibrium, two forces, one in each cone, 
must exist that exactly compensate for the gravitational 
force (see Section 3.1). This condition will select a subset 
of C(ij1, which in this paper is called the feasible space 
and is denoted by F ( i J ) .  Any motion of the robot 
maintaining both contact at the two holds and quasi-static 
equilibrium must occur in F(ij3. 

Since the three limbs are identical, there is no need to 
identify them. In particular, the same configurations can 
he achieved by the robot while maintaining contact at two 
holds, independent of which two limbs form the contact 
chain. It is also assumed that the robot does not bring two 
limb endpoints to the same hold. 

I 
Fig. 2 The different components ofthe three-limbed climbtng robot. 

I \ + /  

Fig. 3. The friction cones for two limb endpoint placements 

3 Equilibrium Analysis 

In this section, it is assumed that the robot rests on two 
given holds i and j ,  as in Figures 2 and 3. This section 
establishes properties of the configurations in C ( i j )  at 
which the robot is in equilibrium. These properties define 
the feasible subspace F(ij). 

3.1 Equilibrium Constraint 

The only external forces acting on the robot are gravity 
and the reaction forces at the two holds. The gravitational 
force acts at the robot’s center of mass, the position of 
which varies as the robot moves. The two reaction forces 
act at the endpoints of the contact chain, which have fixed 
positions. Therefore, the equilibrium constraint can be 
represented completely by a condition on the location of 
the center of mass. 

The work in [33, 341 provides criteria for static equilib- 
rium in a two-dimensional workspace. In particular, it 
notes that if a body acted upon by gravity and two 
external forces is in equilibrium, it will remain so with 
arbitrary vertical translation of its center of mass. This 
observation yields the following proposition when the 
external forces are subject to friction constraints: 

Proposition 1 .  Consider an articulated body that is acted 
upon by a gravitational force -gg at ( X C ~ ~ C M )  and that is 
in contact with two surfaces at points (xlsl) and (x2,yz) 
with associated friction cones F ,  and Fz.  Contact forces 
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can he chosen to place the body in static equilibrium 
without slipping if and only if there exists y E R and unit 
vectors j ,  EFt, b E Fi such that the following condi- 
tions hold 

(Ih) (2 . i ) ( j2 ?) s o 
(IC) Lines through (xisl) and (x2,y2) parallel to 2 and 

(la) (?, + h) ,  ? o 

B ,  respectively, intersect at (xCM,y). 

This proposition allows the equilibrium of the robot to 
he tested given the location of its center of mass. For 
example, Figure 4(a) shows a configuration of the 
climbing robot and illustrates graphically that all three 
conditions in the proposition are verified, so the robot is 
in equilibrium. However, the proposition does not specify 
the shape of the equilibrium region-the region in which 
the center of mass must lie-although it does indicate that 
this region must be a union of vertical columns in the 
workspace. 

In fact, using Proposition 1 it can he shown that the 
equilibrium region is always a single vertical column, 
whose boundaries are easy to calculate. This result, stated 
as Proposition 2, can be explained intuitively. In two 
dimensions, the center of mass of a body resting at two 
points on horizontal supporting surfaces can only vary 
between these two points. Rotating the support surfaces 
can only lead to widening or narrowing the vertical 
column. However, the formal proof given helow is more 
technical. 

Proposition 2. Consider the articulated body of Proposi- 
tion 1. The region over which (xcM,ycM) can vary while 
this body remains in static equilibrium is a single vertical 
column in the workspace. 

Proof From Proposition I, it is clear that the equilibrium 
region is defined by the projection on the x-axis of the set 
of all points (xs) for which unit vectors j ,  E fi, j2  E F2 
can be found satisfying Conditions la-lc. The problem is 
that this set of points is not convex, and in fact is not 
necessarily connected. However, it can be broken down 
into the union of convex sets, each of which projects to a 
connected segment on the x-axis. Further, it can be shown 
that each projected segment overlaps in such a way that 
the entire x-projection is a single connected segment, 
proving the result. 

Assume without loss of generality that xpxl, that x1#x2 
(xl=q is a degenerate case that can he handled sepa- 
rately), and that each friction cone has a half-angle 
A 6 9 0 '  (true for flat contact surfaces). 

First, notice that a point (x,~) satisfies Condition IC 
only if it lies in the intersection (FIU-Fl)n(F$J-F2). Call 
the set of points that additionally satisfy Conditions la-lb 
the set offeasible intersection points for cones FI and F2. 
The equilibrium region is the x-projection of this set. 

(C) (4 
Fig. 4. An example calculation of the equilibrium region associated with 
a Set of limb endDoint DlaCementS for the three-limbed robot. 

Next, divide each Friction cone Fl and F2 into two parts. 
Let F,, he that part ofF, containing points such that x>xl, 
and FI. be  that part of F1 containing points such that x e l .  
Likewise, divide F2 into F2+ and F2. using xz. Since each 
friction cone has a half-angle A@90°, each of FI+, FI., 
Fl+, and F2. must be either a single cone or empty 

Since Condition Ib indicates that force vectors must lie 
in opposite x-directions, the set of feasible intersection 
points for the cones Fl and F2 is equal to the union of the 
set of feasible intersection points for Fl+ and F2., facing 
inward, and Fl. and F2+, facing outward. For example, 
since F2+ is empty for the two friction cones shown in 
Figure 4(a), only the intersection of the inward-facing 
cones FI+ and F2. needs to be considered, as shown in 
Figure 4(h). 

For inward-facing cones, condition l a  can be used to 
show that the set of feasible intersection points (xa) must 
satisfy (V-yI)(x-x2)>1V-y2)(x-xlj, Further divide F1+ into the 
cones Fl+l+, containing points such that @yl)(x2'rl)>@2- 
yl)(x-xl), and Fl+l., containing points such that (y-yl)(x2- 
XI)<(~~-YI)(X-XI). Analogously, divide F2.. This procedure, 
shown in Figure 4(c), simply divides the friction cones 
into the part that points above the line connecting (xl#,) 
and (xz,y2) and the part that points below this line. Again, 
since each friction cone has a half-angle A F 9 O o ,  each of 
the suh-cones must he either a single cone or empty. 

Then from condition la, the set of feasible intersection 
points for the inward-facing cones is exactly the union of 
subsets (-Fl+~+~F2., .)U(Fl+l+~F2,)U(Fl+~.~-F2.~+), as  
shown in Figure 4(d). 

Each of these three subsets is the intersection of two 
convex cones, so is convex with an x-projection that is a 
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single connected segment. Further, it is easy to show that 
if any two subsets are nonempty, their x-projections must 
overlap at either x I  or x2. as is the case in Figure 4(d). 
Therefore, the x-projection of the set of feasible intersec- 
tion points for inward-facing cones is a single connected 
segment. 

An identical argument shows the same result for the set 
of outward-facing cones. In addition, it is easy to show 
that if the x-projections for both the inward- and outward- 
facing cones are nonempty, then they must overlap at 
either xI or x2. Thus, the x-projection for the entire set of 
feasible intersection points is a single connected segment, 
proving Proposition 2 . 0  

3.2 Feasible Space for a Given Pelvis Location 

Given knee bend directions as described in Section 2 ,  
the configuration of the three-limbed climbing robot is 
uniquely specified by the position (xc$c) of the pelvis and 
the angles (eI,&) of the free limb. This section first 
establishes an analytical expression of the feasible space 
OFL of the free limb given (xC$c). Next, this expression is 
used to characterize the connectivity of OFL in Proposition 
3. 

Since the location of the CM of the contact chain is 
fixed by the given (xCsc), the equilibrium region shown 
in Section 3.1 to be a vertical column defined by some 
(xmin,rmmax) can be transformed from a constraint on the 
location of the CM of the entire robot to a constraint on 
the CM of the free limb only. Under the geometry and 
mass assumptions made in Section 2, the following 
relationship holds: 

XCMJrre = (3XCM -2XCM.rhnin)  (1) 
So, the center of mass of the free limb must be within 

the column (xmjafiee,rmmfiee) in the workspace where 

(2) 
Xmin.per = (3xm;n -2xCMrhzn) 
Xmnr.&r = (31"- - 2xCMrhm 

A pelvis location (xc#c) is feasible with respect to the 
equilibrium Constraint only if a configuration of the free 
limb exists such that X c M f i ~ ~ E [ x m , f i ~ e ~ m , , f i ~ ~ ] .  The center 
of mass of the free limb is located at 

x ~ ~ . ~ ~ ~  =xc+f(3cose1+cos(e,+e2)) (3) 

Xmn,fiehrr 2 xc - L 
Xma,frrr s xc + L 

From Equations (l)-(3), a pelvis location is feasible 
only if 

(4) 
Xrmn.fm s Xrnarf ie  

For any feasible pelvis location, the equilibrium region 
of the center of mass of the free limb can be cropped such 
that p ~ ~ ~ ~ ~ , r - ~ = = ] C [ x c - L ~ ~ + L ] ,  since values outside 
these bounds are unattainable. 

The solutions of Equation 3 for a fixed value of xCMfiee 
define a one-dimensional curve in the configuration space 
of the free limb. Curves for several values of xcMfiee are 

8, 
(4 (b) 

Fig. 5 .  Calculating the feasible space Q F ~  of the free limb far a given 
pelvis location. 

shown in Figure S(a). Since the mapping from (el,&) to 
x c ~ f i ~ ~  is single-valued, no two such curves intersect. The 
feasible space OFL of the free limb is the region between 
the solution curves for ~c~fi~.=~,,,i~fi<. and x c ~ f i ~ ~ = ~ - f i ~ ~ ,  
as shown in Figure S(b) for ( x ~ ~ ~ ~ ~ ~ ~ ) = ( ~ ~ - ~ . I L ~ c ~ O . ~ L ) .  

Since the feasible space OFL depends on both xc and 
~ ~ ~ , ~ h ~ ~ ~ ~  which itself is a complicated function of (xcyc), 
it is difficult to compute the four-dimensional feasible 
space of the robot. However, the following proposition 
characterizes the connectivity of this space: 

Proposition 3.  Partition OFL as 
 en^ =en n{(e,,e,)/e, 
e,+ =en n {(el,e2)lel 2 0)' 

( e l m , -  =(-COS-] +,o) 
(e,,e2)x,+ =(cos-'+,o) ' 

(5) 

Also, for any x'€[x~-L,r~+Ll, define 

(6)  

Then the following results hold 

and EOn.. 
( 3 4  Let XE[x,,,pe,,,xm,,pe,,l. Then (@JA):+ EOn+ 

(3h) OpL+ and OFL. are both connected spaces. 
(3c) OFL is connected if and only if 

x - J , ~ ~  e [XC + f l  or 
xmu.prr ~ [ X c - + r X C + f l .  

Proof. Result 3a follows trivially, since (0,,02)z,- and 
(Ol,@2)x,+ are solutions to Equation 3 for x ~ ~ . ~ ~ ~  = X such 
that 8150 and O1>O, respectively. This result implies that 
any attainable value of xCMfiee is attainable with f12=0, and 
that continuous paths between two values of xCMfiCe for 
&O always exist in both OFL. and OFL+. Since the 
boundary of OFL+ is defined by curves of constant .rCM#=*, 
and since, as mentioned above, these curves do not 
intersect, then a curve of constant x ~ ~ . ~ ~ ~  = X between 
(81,0,)€0,+ and (@,,e2);+ that lies completely within 
OFL+ always exists. So a path between any two configura- 
tions (l?l,@z)j EOn+ and (e1,&), EOn+ can always be 
generated by moving from (el,%)j along a curve of 
constant x ~ ~ , ~ ~ ~  = X, to (el,&):,+, moving along &=O to 
(€',,e2)+, and moving along a curve of constant 
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xm./rrr =XI to (8l,8& Therefore,  OF^+ is connected. The 
result for  OF^. follows identically, so Result 3b holds. To 
prove Result 3c, notice that OFL is connected if and only if 
some (e,,&) EOF’ exists such that 8]=0 or BI=*rr. From 
Equation 3, this is equivalent to saying that 
X C M , ~ ~  Z r x c - + , x c + $ l  at some (el,&) EOFL, which 
from Result 3b can occur if and only if either 
x-,fiec $[xc-f-,xc++l or xrn,,fiee G[xC-+.xC+f].O 

3.3 Implications 

Proposition 3 implies that for any feasible pelvis loca- 
tion the feasible space of the free limb can be divided into 
two non-empty, connected components, OFL+ and ElFL.. 
Therefore, using Result 3a it is possible to extend any 
feasible continuous path of the pelvis to a feasible path of 
the entire robot, such that the configuration of the free 
limb remains in either OFL+ or OpL.. This key result yields 
the continuous planning approach described in this 
section to compute one-step motions of the robot. 

First, decompose the four-dimensional feasible space 
F ( i j )  into four subsets as illustrated in Figure 6(a). Each 
subset corresponds to a pair of knee bends in the limbs 
forming the contact chain. In each subset. the position of 
the CM of the contact chain is uniquely determined by the 
position of the pelvis. Therefore, the feasibility of a pelvis 
location in each subset is determined by Equation 4. 
Transitions between subsets can occur only within one- 
dimensional curves along their boundaries, which 
correspond to feasible positions of the pelvis in which one 
of the limbs is fully stretched out. 

Further partition each subset into two parts according to 
the sign of the configuration parameter el of the free limb, 
as illustrated in Figure 6(h). In one subset (B1?0), the first 
segment of the free limb points upward; in the other 
subset, it points downward. Notice that the sign of 81 also 
serves to distinguish OFL+ from ElFL., so robot configura- 
tions in each of the two parts of each subset correspond to 
free limb configurations entirely in either OFL+ or 0 FL.. 
Transitions between the two parts can occur only within 
two-dimensional regions where OFL is connected, i.e. 
where the conditions of Result 3c are satisfied. 

Suppose for a pair of holds ( i j )  that in each of the four 
subsets shown in Figure 6(a) an explicit representation 
can he built of the two-dimensional region formed by the 
feasible positions of the pelvis. From Proposition 3, this 
region is identical in the two parts of each subset corre- 
sponding to OFL+ and OFL.. Therefore, the connected 
components of each of the eight subsets shown in Figure 
6(b) can he determined. Likewise, suppose that an explicit 
representation can he built of the one-dimensional 
transition curves between the subsets corresponding to 
different knee bends and of the two-dimensional transi- 
tion regions between the parts of each of these subsets 
corresponding to OFL+ and OFL.. Using these transition 
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. .  
Fig. 6.  Decompositions of F&] into four sub-spaces based on knee 
bends and info eight sub-spaces based additionally on whether the free 
limb is pointing up or down. 

curves and regions, the connected components of each of 
the eight subsets can be linked to form a discrete graph. 

Components of this graph are the connected compo- 
nents of the two-dimensional space of feasible pelvis 
positions of the robot. This space, which is denoted 
Fdij], is the projection of F(ij)  onto (XQC). To plan a 
continuous path between any two points in a connected 
component of F(ij), it suffices to plan a path in the 
corresponding component of Fp(ij]. This path can then be 
lifted to F(ij) using Proposition 3. Define a distinct state 
for each such connected component of Fp( iJ ) ,  and denote 
it ( i j ) ~ ,  ( i j le .  etc. 

Finding analytic representations of F&] and the 
transition regions is impractical. In the current imple- 
mentation, these regions are constructed using probabilis- 
tic roadmaps similar to those in [35]. For the three-limbed 
robot, a deterministic two-dimensional grid approxima- 
tion would work as well. However, this approach might 
scale poorly to climbing robots with more than three 
limbs. 

4 Overall Planning Framework 
This section describes an overall framework for plan- 

ning a sequence of one-step motions from a specific 
configuration on an initial pair of holds to a goal hold. 

4.1 Search Space 

The search space for the three-limbed climbing robot is 
a hybrid space, involving both continuous and discrete 
actions. Discrete actions correspond to placing a limb 
endpoint on a hold or removing it from the hold. They 
decompose the overall climbing motion into a sequence of 
steps. During each step, two limb endpoints are positioned 
at two given holds and the action is a continuous motion 
that brings the endpoint of the free limb from one hold to 
another. Therefore, motion planning can be divided into 
discrete planning and continuous planning operations, 
each with its own search space. 

Section 3 described the continuous-planning search 
space of the robot, when its limbs are in contact with two 



holds i and j, and presented a method of generating the 
components of the feasible part of this space (e.g. ( i j ) A ,  

The discrete-planning search space is the collection of 
all of these components, for all pairs of holds (ij] in the 
workspace. So, each state in this search space is a single 
component (i j) ,  of Fp(i j ] .  Each possible successor of a 
state ( i j )M is another state of the form (i,k)N or (j,k)o, 
which is a single component of Fp(i,k) or F p ( j , k )  for a 
different pair of holds (i,k) or (j,k). 

A link to a successor is a robot configuration with limbs 
in contact with holds i, j, and k, that satisfies two condi- 
tions. First, the position of the pelvis in this configuration 
must he common to both ( i j ) ,  and (i,k)N (or (j,k)o). 
Second, the four-dimensional representation of this 
configuration in C ( i j )  and C(i ,k)  (or C(j ,k))  must he in 
F(ij] and F ( i , k )  (or F(j,k)), respectively. The second 
condition must he satisfied because the link defines a 
specific free-limb configuration, while the components 
(id], and (i,k)N (or (j,k)o) specify compliant free-limb 
configurations only. Note that this is the only point in the 
planning process at which F(ij ) ,  rather than F p ( i j ) ,  need 
he considered. In the current implementation, these link 
configurations are generated using a random sampling 
technique. 

For example, consider the environment shown in Figure 
7(a). The robot is initially located on holds (0,l) with a 
goal of reaching hold 4. The discrete-planning search 
space is shown in Figure 7(h). In this example, only 
FP(2,3) has more than one component, (2,3)A and (2,3)B. 

4.2 Algorithm 

(i j la,  etc.). 

In practice, it is too costly to compute the entire search 
space online for a reasonably sized environment. Instead, 
heuristic methods are used to guide the discrete search 
and the components of Fp(ij) are only computed as each 
pair of holds (if is explored. 

For example, a necessary condition for a link between 
two pairs of holds ( i j )  and (i,k) is that holds i and k he 
distant by less than 2L. Likewise, the equilibrium regions 
(x,,,~&-~~~) for both pairs of holds (see Section 3.1) must 
overlap. These simple conditions make it possible to 
quickly filter out many successor holds. 

Another useful heuristic is to pre-compute rough dis- 
crete plans, without any continuous-planning exploration, 
using conservative approximations for the components 
( i n M  of each Fp(ij). In almost all cases, it has been found 
that each of the eight subsets illustrated in Figure 6(b) 
contains a single connected component. Using this 
decomposition, the entire discrete search space can be 
computed online. The resulting nominal plan is then used 
to guide a discrete search using the exact decomposition 
of every Fp(ij]. 

The appropriateness of this approach is motivated by 
Observation of the way in which human climbers plan 

Fig. 1. An example environment far the three-limbed climbing robot and 
the corresponding connectivity graph between discrete states. 

their motion. The resulting path, often called a sequence, 
consists of a series of moves, such as a hack-step or high- 
step, between an ordered set of hand and foot placements 
(see [36, 371). Each move does not specify a continuous 
path, hut rather a discrete choice that is exactly analogous 
to the selection of knee-bend directions for the three- 
limbed robot. 

Future observation of human climbers may suggest 
other useful heuristics, such as a consideration of the size 
of equilibrium regions. 

5 Simulation 
Figure 8 shows the result of applying the planning 

algorithm described in Sections 3 and 4 to move the three- 
limbed robot through the simulated vertical terrain 
illustrated in Figure 7(a). Notice that the center of mass of 
the robot stays within the equilibrium region, as required. 

Other results, including animations of 3D-simulations, 
are available online at htte:llarl.stanford.eduJ-tbretV. 

( 4  (e) (9 
Fig. 8. Results of a simulation, shown as a time-sequence. 
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6 Future Work 
This paper presented a framework for planning the 

motion of a three-limbed climbing robot in vertical terrain 
and showed the results of applying this framework in 
simulation. Current work concerns the application of the 
planning algorithm to experimental hardware. As part of 
this effort, the continuous-planning method described in 
Section 3 is being extended to handle additional motion 
constraints, more complicated robot geometries, imper- 
fectly known environments, and three-dimensional 
terrain. Future work will address other fundamental issues 
such as sensing, control, hardware design, and grasping. 
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