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Abstract: This paper considers the control of planetary rovers that use mobility
strategies incorporating aggressive maneuvers such as jumping or hopping. Robust
execution of an aggressive maneuver is difficult since success depends critically on
the state of the system as it begins the maneuver. This paper presents an efficient
algorithm for planning a robust maneuver based on the consideration of noise
in the time at which the maneuver begins. A complete implementation of this
algorithm is shown for a specific system in simulation.
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1. INTRODUCTION

Mission goals for planetary robotics are becoming
more ambitious in terms of both desired results
and required autonomy. Surface mobility has been
identified as one of the fundamental considera-
tions in the design of planetary rovers that can
meet these goals (Baumgartner, 2000).

Creating a highly mobile robot depends on both
hardware design and the range of motions that
can be handled safely by on-board motion plan-
ning and control algorithms. Model-based plan-
ning and control has been used (Iagnemma et
al., 1999) to enable wheeled rovers with rocker-
bogie or active suspension to traverse rough ter-
rain . Distributed control techniques have been
applied (Pirjanian et al., 2002) to allow coordi-
nated groups of rovers to descend steep cliff faces.

To manage extremely long surface traversals, in-
novative new mobility strategies involving jump-
ing or hopping robots are also being considered
(Hale et al., 2000). These strategies can be much
more efficient than those based on wheeled or
rocket-powered robots (Fiorini et al., 1999). They

can also provide an additional layer of mission ro-
bustness. If the robots are unable to move to a de-
sired location because normal mobility strategies
are insufficient or have failed, the more aggressive
jumping or hopping strategies can be used.

However, more sophisticated control algorithms
are required before mobility strategies involving
jumping robots can be considered reliable. Non-
periodic jumping and hopping are examples of
aggressive maneuvers, a class of motions that
have proven difficult to plan and to execute. An
aggressive maneuver is defined in general as a
trajectory along which the system switches into
and out of an aggressive operational mode such
as free flight (Bretl and Rock, 2002). Within this
operational mode, the ability of the robot to affect
its trajectory is very low. Thus, the success of
the maneuver depends critically on the state of
the system as it enters the aggressive operational
mode.

There are a variety of methods to handle systems
that involve aggressive maneuvers. Methods that
explicitly plan these maneuvers are application-



Fig. 1. A simple climbing robot, shown performing
an aggressive maneuver. This maneuver is a
jump between two pegs, consisting of a de-
tach action, free flight, and an attach action.

specific, as in (Lynch and Mason, 1997) and
(Gavrilets et al., 2002). More general methods
treat these types of systems using hybrid dynam-
ical models. If a hybrid model has one of sev-
eral very specific forms, it can be analyzed as in
(Heemels et al., 2001). Issues of controllability for
specific applications such as periodic legged loco-
motion have been addressed (Goodwine and Bur-
dick, 1997). However, these methods previously
have not been extended to provide a tractable
approach to planning and control synthesis for
aggressive maneuvers.

This paper describes a general method for gener-
ating robust trajectories for aggressive maneuvers,
where the level of robustness is guaranteed. It
extends the work of (Bretl and Rock, 2002) to
present a complete implementation of the plan-
ning algorithm for a specific system.

Section 2 presents the specific system to be ex-
amined in simulation and frames the problem of
planning a single aggressive maneuver. Section 3
describes the implementation of a complete solu-
tion method for the example system and describes
ways in which this method could be generalized
for an arbitrary system. Section 4 discusses the
results of applying the solution method to the
example system. Finally, Section 5 presents possi-
bilities for future work.

2. PROBLEM DEFINITION

Using a specific system as an example, this sec-
tion identifies the critical problem in planning an
aggressive maneuver. In particular, it identifies a
criterion for determining the level of robustness of
a given maneuver trajectory.

2.1 FExample System

The example system studied in this paper is a
robotic system that depends on jumping in order
to navigate through its environment. This system
is a simple “climbing robot,” shown in Figure 1.
The robot moves in a vertical plane and consists
of a single rigid bar, the endpoints of which can

Fig. 2. Problem setup for the climbing robot
attempting to jump between Pegs A and B.

attach to, detach from, and exert a torque on pegs
scattered throughout its environment.

Although this system and its environment are
highly idealized, the planning and control tech-
niques developed in this paper can be applied
directly to more complicated real designs. As long
as the contact dynamics can be modeled as dis-
crete then the techniques can be applied to sit-
uations with three-dimensional motion and high-
DOF manipulation.

2.2 Problem Setup

Assume, as shown in Figure 2, that the robot,
which consists of a massless link of length L
between two equal masses m, is attempting to
jump from Peg A to Peg B. To simplify analysis in
this particular example, it will detach End 1 from
Peg A and, after a period of free flight, attach End
2 to Peg B. In general, it could attach either end
to Peg B.

The robot’s trajectory is not controllable after it
detaches from the first peg, so the success of a
jump depends only on the state (90,90) of the
robot at the time it detaches. Given these initial
conditions and the location (z4,y4) of Peg A, the
position (z(t),y(t)) of End 2 of the robot for any
future time t is expressed as follows:

L
x(t)=za+ 5 cos(fy) +

+§ (cos(@o + 9ot) — ot sin(@o)) (1)

L . t2
y(t) =ya+ D) SIH(GO) - 97 +

+§ (Sin(eo + 9075) + 90t COS(HO)) (2)

For the peg geometry (Az, Ay) shown in Figure
2, the distance of End 2 from Peg B at time t can
be expressed as the function
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Fig. 3. Goal preimage in the range 6y € [—12,12]
for a single jump of the climbing robot. The
region is the shaded area only.

The minimum distance between End 2 and Peg B
over all future time is given by

Dunin (90, 49'0) = min D (90, b, t) (4)

Assume that End 2 of the robot can attach to
Peg B if it is within some radius e of the peg.
Then for a jump from Peg A at a state (6o, 6p)
to be successful, the following equation must be
satisfied:

Dunin (90,9'0) <e (5)

2.8 Goal Preimage

The set of solutions to Equation 5 forms a region
in the space of initial conditions. In the absence
of noise, this region is the preimage of the jump
goal, since the robot can detach from Peg A at a
state corresponding to any point in this region to
arrive safely at Peg B.

Figure 3 shows a portion of this preimage for the
climbing robot for the peg geometry (Ax, Ay) =
(2v2,-2v/2) and L = 1. The width of this
region is determined by the variable e. The set
of solutions for ¢ = 0, resulting in free-flight
trajectories that place End 2 exactly on Peg B,
is a curve running through the region.

Equations 1-5 can be modified to account for
possible noise or control inputs during free-flight.
In general, noise will tend to shrink the preimage,
while control inputs will tend to expand it.

A feasible trajectory for an aggressive maneuver is
any trajectory that ends in a command to detach
from Peg A at a state inside the goal preimage.
Any planning technique can be used to select
this nominal detach state, or nominal transition
point. Typically there will be considerations such
as obstacle avoidance or global path optimization
that result in the selection of a particular detach
state. However, it is possible that the selection is

arbitrary, because characterizing the entire goal
preimage is computationally intensive.

2.4 Robustness Criterion

Several types of uncertainty arise in the execution
of an aggressive maneuver. The shape of the goal
preimage accounts for uncertainty after the detach
action. It is assumed that good control is available
for tracking trajectories before the detach action,
so uncertainty before the detach action is assumed
to be small.

Uncertainty during the detach action can be mod-
eled as uncertainty in the exact time at which the
detach action occurs. A detach action, although
considered to be a discrete event, actually has
associated continuous dynamics which are difficult
to quantify. At some point these dynamics will
result in a transition from the operational mode
in which the robot is hanging on Peg A to the free-
flight operational mode. The state at which this
transition is made is the state that must be inside
the goal preimage for a jump to be successful. So
the detach action should be regarded as occuring
some uncertain amount of time after the detach
command is given.

In addition, assume that the detach command is
independent of the continuous inputs and trajec-
tory before the detach action occurs. So between
the detach command and the transition to a free-
flight operational mode, the effect of the con-
tinuous torque input does not change. Then for
a jump to be considered robust, the continuous
trajectory through the nominal detach state must
remain within the goal preimage for at least as
long as the range over which the time-of-transition
is expected to vary.

3. PROBLEM SOLUTION

The generation of a trajectory for an aggressive
maneuver that satisfies the robustness criterion
developed in Section 2 was implemented in four
steps. First, a nominal transition point was cho-
sen. Next, a portion of the goal preimage was
generated inside a local region about the transi-
tion point. Then, an optimization problem was
solved to generate the portion of the trajectory
just prior to the transition. Finally, a global plan
from arbitrary initial conditions was generated to
reach the beginning of the trajectory leading to
the transition.

The selection of a nominal transition point, as
mentioned in Section 2.3, involves higher level
considerations which are beyond the scope of
this paper. For this reason, a transition point



was arbitrarily chosen using a random search
technique.

The generation of a global plan is a well-
understood problem. The technique used in this
paper was feedback control of system energy,
which is a practical approach for the climbing
robot system. Details of this approach are given
by (Astrom and Furata, 1996).

This section focuses on the two other parts of the
solution method, the generation of a local goal
preimage and the generation of an optimal trajec-
tory leading to the transition. These algorithms
take the nominal transition point as input and
return a trajectory that begins at some point zg
inside the local goal preimage and ends in a transi-
tion. The global planning method is then applied
to reach xp from arbitrary initial conditions.

3.1 Local Goal Preimage

In planning the trajectory leading to a detach
action it will be assumed that the goal preimage
is convex. This assumption does not hold for the
region shown in Figure 3 and does not hold in
general. However, this assumption holds within
some local neighborhood of a nominal transition
point, which is all that needs to be considered for
local modification of the continuous trajectory. In
addition, this assumption allows the use of the
highly tractable planning method to be presented
in this section, the solution to which provides a
good sub-optimal policy. This solution could be
used as a starting point for optimization within
the full nonconvex region. Therefore, a convex
subset of the true goal preimage will be used for
synthesis.

A general method for computing this convex sub-
set is to first compute the complete goal preimage,
then search for the largest ellipsoid that contains
the nominal detach point and that is completely
contained within the preimage. Level set meth-
ods are an appropriate way of calculating goal
preimages for general systems (Mitchell and Tom-
lin, 2000).

In practice, it is often quicker to use a heuristic
method such as that shown in Figures 4 and 5.
First, a polygonal approximation to the local goal
preimage is generated. Since the method in Figure
4 relies on only a small number of gradient calcu-
lations, it has worked better for this application
than other methods such as active contour models
(Kass et al., 1987). Next, the polygonal approxi-
mation is truncated to a convex subset. This trun-
cation is known as the “potato peeling” problem,
for which an optimal solution exists (Chang and
Yap, 1986). However, this solution is impractical

Fig. 4. Iterative generation of a polygonal ap-
proximation to the local goal preimage. At
each iteration, a small step is taken in the
approximate direction of the contour, then
adjusted locally to find a new vertex on the
boundary.

Fig. 5. Truncation of the polygonal approximation
of the goal preimage to a convex subset. First,
cuts are made along all edges adjacent to
concave vertices. Then, vertices adjacent to
any remaining concave vertices are removed
in descending order of distance from the
nominal detach point.

to implement, so the heuristic shown in Figure 5
was used.

Using the above techniques, a convex subset of
the local goal preimage can be generated in near
real-time (5-10 seconds on an 800 MHz processor.)
This subset is polygonal, and can be expressed as
a set of linear inequalities.

3.2 Local Trajectory Optimization

Assume that the time-of-transition is expected to
vary over a time interval 7. Also assume that
the set of continuous dynamics before the discrete
transition is given by

x(t+ 1) = Ax(t) + Bu(t) (6)
Finally assume, as discussed in Section 3.1, that

the goal preimage is convex and can be expressed
by the set of linear inequalities

Fx(t)<g (7)

Then the planning problem for the robustness cri-
terion given in Section 2.4 is expressed as follows:



Problem 1. (Existence)

Find : xg,u
SubjectTo : Fx(t) <g,0<t<T
Umin S U/(t) S Umax; 0 S t S T

In general, the solution to Problem 1 is not
unique. The problem statement can be extended
to include multiple objectives. For example, let
(X,U); be the set of all solutions (x¢,u) to
Problem 1 for a given value of T. Then the
solution to Problem 1 of minimum input norm
for a given value of T' can be found by solving

Problem 2. (Minimum Input Norm)

Find : argmin, ,[lufl2
SubjectTo : (xg,u) € (X, U),,

In addition, let ¥ (T) : T — (xo,u) be the
solution to Problem 2, and define the minimum-
escape-time function as

f(xo,u) =inf{T: ¥ (T) e (X,U);} (8)

Then the solution to Problem 2 for the maximum
possible value of T', the “most robust” solution of
minimum input norm, can be found by solving

Problem 3. (Most Robust)
Find : argmax, ,f (X0, 1)

The most robust solution can tolerate the highest
possible level of uncertainty in time-of-transition.

The state of the system at any time step ¢ is

t—1
x(t) = Alxg + Z ACD=FBy(k)  (9)
k=0

So for a fixed value of T', the constraints on the
domain of Problem 1 are linear in the variables
X and u. Thus, the problem is convex and can be
solved as a linear program. The objective function
of Problem 2 is a quadratic function of u while the
constraints are identical to those of Problem 1, so
Problem 2 is also convex and can be solved as a
quadratic program.

Further, sublevel sets of —f (xg,u) are convex, so
f (x0,u) is quasiconcave. Thus, Problem 3 is a
quasiconcave optimization problem. This type of
problem can be solved efficiently using bisection
around a convex sub-problem (Boyd and Barratt,
1991; Boyd et al., 1994).

Although the planning method thus far assumes
linear dynamics, it extends naturally to nonlin-
ear dynamics. It has been assumed that the goal
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Fig. 6. Most-robust trajectory through a convex
subset of the local goal preimage.
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Fig. 7. Global most-robust trajectory.

preimage has been truncated to a small local
convex subset about the nominal transition point.
Therefore, it can be expected that a linearization
about this point will be very accurate throughout
the subset. As a result, the solution to the plan-
ning problem applied to the linearization will be
a very good approximation of the optimal solu-
tion of the nonlinear planning problem within the
convex subset. For details of this linearization, see
(Bretl and Rock, 2002).

4. RESULTS

This section shows the results of applying the
planning method presented in this paper to the
climbing robot system.

Figure 6 shows the most robust solution of the
planning problem for the nominally desired tran-
sition point (6, fg) = (1.4, —3.1). This solution is
the trajectory that remains in the convex subset
of the local goal preimage as long as possible, in
this case for 0.27 seconds. Figure 7 shows the full
global trajectory associated with the most robust
solution, starting from (6,) = (—1.57,0).

In addition, Figures 6 and 7 show a feasible
nominal trajectory for the same jump generated
using only the energy feedback control method
described in Section 3. This trajectory remains



within the goal preimage for 0.23 seconds, which is
nearly optimal. In fact, over a range of nominally
desired transition points, the trajectories gener-
ated using the robust synthesis method remained
within the goal preimage only 30% longer than
those generated using the energy feedback control
method.

Although this result indicates that energy feed-
back control is a good heuristic for generating ro-
bust transition trajectories for the climbing robot
system, there are several other advantages of using
the robust synthesis method. First, the robustness
of the synthesis method is guaranteed. Second, it
will be more difficult to find a controller heuristic
for a general system.

Finally, the synthesis method allows the use of the
null-space of the most robust solution to consider
other optimization criteria. The fact that the two
trajectories in Figure 6 are so similar is primarily
because the null-space of the most robust solution
was used in this example to minimize the input
norm. A minimum-norm solution is the solution
which is closest to a constant-energy trajectory,
or in other words which is closest to the energy
feedback control trajectory. It might be desirable
instead to minimize the time of free-flight or to
minimize the velocity of End 2 of the robot upon
contact with Peg B. If these criteria are used in
the formulation of the most robust solution, the
resulting trajectory will be much different from
the constant-energy solution.

5. CONCLUSION

This paper motivated the use of aggressive ma-
neuvers in the creation of highly mobile planetary
robots. It demonstrated that robustness to noise
in the time of the transition to an aggressive oper-
ational mode is an appropriate design criterion for
creating robust trajectories for these maneuvers,
and presented a complete implementation of a
corresponding planning algorithm for a specific
robotic system.

The use of level set methods to calculate the
complete goal preimage for a general system is an
opportunity for future work. Also, the selection
of nominal transition points based on higher-level
considerations should be examined.
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