
 

When Is a Helix Stable?
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We determine which helical equilibria of an isotropic Kirchhoff elastic rod with clamped ends are stable
and which are unstable. Although the set of all helical equilibria is parametrized by four variables, with an
additional fifth parameter determined by the rod’s material, we show that only three of these five parameters
are needed to distinguish between stable and unstable equilibria. We also show that the closure of the set of
stable equilibria is star convex. With these results, we are able to compute and visualize the boundary
between stable and unstable helices for the first time.
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Introduction.—In 1859, Kirchhoff observed that the
centerline of an inextensible, unshearable, isotropic, and
uniform elastic rod in equilibrium can be a circular helix,
and he classified all helical equilibria for rods of this
type [1,2]. This classification was extended to rods that
are extensible and shearable, but still isotropic and uniform,
by Antman [3] and Whitman and DeSilva [4], and the
extension to anisotropic rods was later completed by
Chouaieb, Goriely, and Maddocks [5–7]. A natural ques-
tion to ask is which of these helical equilibria are stable,
i.e., which helices locally minimize elastic potential energy,
in an appropriate sense. A complete answer to this question
has not been obtained before now. In this Letter, we
determine which helical equilibria of an inextensible,
unshearable, isotropic, and uniform elastic rod with
clamped ends are stable and which are unstable.
There has been considerable work on analyzing the

stability of elastic rods in both helical and more general
configurations, with two approaches taken in previous
literature. First, dynamical methods can be used to determine
how perturbations to an equilibrium configuration grow in
time [8–18]. Second, potential energymethods can beused to
determine if an equilibriumconfiguration is a localminimum
of an elastic energy functional among an appropriate class of
perturbations [5,19–32]. (See [5,12–23,28,30] for work
pertaining to rods with helical centerlines and [24–27,31]
forwork on the degenerate case of a helical rodwith a straight
or circular centerline.) In this Letter, we focus on the potential
energy method, but we note that the relationship between
dynamical and potential energy methods is not fully under-
stood ([33], Chap. 5.7).
When using the potential energy method, approaches to

determining if an equilibrium configuration locally mini-
mizes elastic energy include the use of integral inequalities
[19–25], bifurcation methods [5,26–29], and the conjugate

point test from the calculus of variations [5,29–32]. Various
boundary conditions at the ends of the rod can be
considered when using the above methods to determine
stability, including clamped ends, loaded ends, or mixed
boundary conditions (although the application of the
conjugate point test with nonclamped ends is a delicate
issue [34,35]). In this Letter, we use the conjugate point test
and consider the case of clamped ends.
None of the approaches described above have so far

provided analytical conditions for stability that apply to all
helical rods. Analytical conditions based on integral
inequalities are typically only necessary or sufficient for
stability. Conditions based on dynamical, bifurcation, and
conjugate point methods can be evaluated analytical only
for special types of helices, e.g., rods with circular center-
lines. For this reason, numerical computation (using one of
these methods) has so far been the only way to determine if
an arbitrary helical rod is stable.
In principle, anyone could have used numerical compu-

tation to compute—exhaustively—the set of all stable
helical equilibria before now. However, for an inextensible,
unshearable, isotropic, and uniform elastic rod, the set of all
equilibrium configurations with helical centerlines is para-
metrized by four variables [5–7], and changing the rod’s
material introduces a fifth parameter. The results of
exhaustive computation in this five-dimensional parameter
space would have been difficult to visualize and would
have provided little qualitative insight.
In this Letter and a companion paper [36], we derive

several invariance and scaling properties that simplify the
process of distinguishing between stable and unstable
helical equilibria using the conjugate point method. We
show that only three of the five parameters described above
are needed to determine the stability of a helical rod, and we
show that the closure of the set of stable helical rods—a
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subset of this reduced, three-dimensional parameter
space—is star convex. This geometric result allows us to
compute points on the boundary between stable and
unstable helices by sampling a hemisphere. As a conse-
quence, we can compute and visualize the boundary
between stable and unstable sets of helical equilibria.
This visualization leads to a new result, that a helical
rod of length L with curvature less than 2π=L and with
arbitrary torsion is stable if it is sufficiently twisted.
Equilibrium and stability.—We begin by describing

conditions for equilibrium and stability of elastic rods.
We note that conditions for stability based on the conjugate
point test have previously been derived using a Lagrangian
formulation [5,29–32] and were used to numerically
analyze the stability of elastic rods with helical centerlines
[5,30]. The approach used in this Letter, however, is based
on a Hamiltonian formulation of the conjugate point
test [37], which allows us to derive several properties of
conjugate points in helical rods.
The configuration of an inextensible and unshearable

rod of length L is described by the maps r∶½0; L� → R3

and R∶½0; L� → SOð3Þ, where SOð3Þ is the set of three-
dimensional rotation matrices. The map r describes the
rod’s centerline, and R describes the orientation of a triad of
orthonormal vectors attached to the rod’s centerline [33].
These functions must satisfy

r0 ¼ Rv R0 ¼ Rû; ð1Þ

where primes denote differentiation with respect to arc
length s∈½0;L�, v ¼ ½ 1 0 0 �T , and the map ∶̂R3→
soð3Þ satisfies a × b ¼ âb for all a, b ∈ R3. The first
element u1 of the vector u is the twisting strain, and the
second and third elements u2 and u3 are the bending strains.
We enforce clamped boundary conditions on the positions
rð0Þ; rðLÞ and orientations Rð0Þ; RðLÞ at the rod’s ends.
The elastic energy of an isotropic elastic rod is

1

2

Z
L

0

ðcu21 þ u22 þ u23Þds; ð2Þ

where c > 0 is the ratio of torsional to bending stiffness.
We assume the rod is uniform so that c is constant. The
conditions for a configuration of the rod to be in equilib-
rium [i.e., to be an extremal of the energy (2)] are that, in
addition to satisfying (1) and the boundary conditions, there
exist functions m, n∶½0; L� → R3 satisfying

m0 ¼ m × uþ n × v; n0 ¼ n × u;

u1 ¼ c−1m1; u2 ¼ m2; u3 ¼ m3:
ð3Þ

Mechanically, the functions m and n describe the internal
moments and forces, respectively, acting on the rod [33]. In
the Hamiltonian formulation, m and n are adjoint variables
associated with the constraints (1) [37,38].

We say that a rod is helical if its centerline r is a circular
helix, i.e., its curvature and torsion are constant. Solutions
of the system (3) corresponding to helical centerlines with
curvature κ ≥ 0 and torsion τ have the form

mðsÞ¼

2
64

ω

κcosðγsþϕÞ
κ sinðγsþϕÞ

3
75 nðsÞ¼ ðω− τÞ

2
64

τ

m2ðsÞ
m3ðsÞ

3
75; ð4Þ

where ω is the twisting moment, ϕ is a phase parameter,
and γ ¼ τ − ω=c [cf. Ref. [6], Eqs. (86) and (94); Ref. [12],
Eqs. (4.6)–(4.9)].
For a given equilibrium configuration of the rod, the

conjugate point condition can be applied to determine if the
configuration locally minimizes the elastic energy func-
tional (2) [5,29–32]. To apply the conjugate point test,
Eqs. (1) and (3) are linearized, resulting in a linear system
of the form

J0 ¼ HJ þGM; M0 ¼ FM; ð5Þ

where F, G, and H are 6 × 6 matrices that depend on m, n,
and c. (Expressions for F, G, and H are given in the
companion paper [36].) The system (5) is solved with the
initial conditions Jð0Þ ¼ 06×6 and Mð0Þ ¼ I6×6, where
06×6 is the 6 × 6 matrix containing all zeros and I6×6 is
the 6 × 6 identity matrix. If det½JðsÞ� ¼ 0 for some
s ∈ ð0; LÞ, then s corresponds to a conjugate point and
the equilibrium configuration is not stable. If det½JðsÞ� ≠ 0
for all s ∈ ð0; L�, then there are no conjugate points and the
equilibrium configuration is stable [37].
The conjugate point test can be applied to the helical rod

solutions in (4) for any values of κ > 0, τ, ω, ϕ, and c > 0.
The test cannot be applied, however, when κ ¼ 0, which
corresponds to a straight, twisted rod. Because of the
clamped boundary conditions and the assumption of inex-
tensibility, the straight, twisted rod is an isolated configu-
ration (i.e., there are no nearby admissible configurations
with nonstraight centerlines), and is therefore an abnormal
extremal of the elastic energy (2) [37].
Reduction of the parameter space.—Five parameters

appear in the expressions (4) corresponding to helical rods.
Four of these parameters, κ, τ, ω, and ϕ, describe the helical
configurations of the rod (cf. [5–7]), while the fifth
parameter c depends upon the rod’s material properties.
We now show that only three of these parameters, κ, τ, and
ω, are needed to distinguish between stable and unstable
helical rods. As one might expect, the phase ϕ does not
affect stability. This invariance results from the isotropy of
the rod, and changing ϕ simply corresponds to rotating the
reference frame in which equations (3) are written. In the
companion paper [36], we show that a coordinate trans-
formation can be used to remove the dependence upon ϕ in
the system (5).
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Less apparent, however, is the invariance of stability
under changes in the stiffness parameter c. If κ, τ, and ω are
fixed in (4), varying c has no effect on the rod’s centerline,
which has curvature κ and torsion τ. Varying c does,
however, affect the twist u1 as shown in (3). Varying c also
changes the weight placed on twist in the elastic energy
functional (2). Together, the changes in twist and in twist
energy result in no change in stability. In the companion
paper [36], this property is established by integrating (5) to
find a closed-form expression for JðsÞ and then showing
that varying c does not affect the arc lengths at which
det½JðsÞ� ¼ 0. Note that if τ and ω are nonzero and have the
same sign, the choice c ¼ ω=τ > 0 gives γ ¼ 0. If we
further choose ϕ ¼ π=2, then u ¼ ½ τ 0 κ �T , and the
frame R corresponds to the Frenet-Serret frame of the
curve r.
We have shown that only three of the five parameters

appearing in the expressions (4) are needed to determine
the stability of a helical rod. We can therefore visualize the
stability of all inextensible, unshearable, isotropic, and
uniform helical rods within a three-dimensional parameter
space with coordinates κ > 0, τ, and ω.
Star convexity of the stable subset.—We now derive a

geometric property of the three-dimensional κ-τ-ω param-
eter space. Let scðκ; τ;ωÞ > 0 denote the first conjugate
point along the helical rod with curvature κ > 0, torsion τ,
and twisting moment ω, i.e., the first s > 0 at which
det½JðsÞ� ¼ 0. If scðκ; τ;ωÞ > L, then the helical rod with
length L, curvature κ > 0, torsion τ, and twisting moment
ω is stable, whereas if scðκ; τ;ωÞ < L, then the helical rod
is unstable. In the case scðκ; τ;ωÞ ¼ L, the conjugate point
test fails to give a definitive answer.
In the companion paper [36], we derive a scaling law that

relates conjugate points along different helical rods. This

scaling law states that for any choice of κ > 0, τ, and ω, and
any positive number λ > 0, we have

scðλκ; λτ; λωÞ ¼ λ−1scðκ; τ;ωÞ: ð6Þ

While this scaling law can be used to compare conjugate
points along different helical rods, it also allows us to derive
a geometric property of the subset of points in the κ-τ-ω
parameter space that correspond to stable helical rods.
Consider a rod of length L and suppose the point ðκ; τ;ωÞ
satisfies scðκ; τ;ωÞ ¼ L. The point ðκ; τ;ωÞ is on the
boundary between stable and unstable helices. Next, for
any λ ∈ ð0; 1Þ we have from (6) that scðλκ; λτ; λωÞ > L,
and for any λ > 1 we have scðλκ; λτ; λωÞ < L. In other
words, each ray extending from the origin in the κ-τ-ω
parameter space intersects the boundary between stable and
unstable helices at most once. Furthermore, we show in the
companion paper [36] that for any ðκ; τ;ωÞ with κ > 0, we
have scðκ; τ;ωÞ < ∞, i.e., every helical rod becomes
unstable at a finite length. We conclude that each ray
extending from the origin in the κ-τ-ω parameter space
intersects the boundary between stable and unstable helices
exactly once.
This argument suggests that the subset of points in the

κ-τ-ω parameter space corresponding to stable helical rods
is star convex with respect to the origin. However, we must
have κ > 0 for the conjugate point method to be applicable,
and we therefore cannot have λ ¼ 0. We conclude that the
closure of the set of points corresponding to stable helical
rods, which contains the origin, is star convex. This
geometric property of stable helical rods would have been
difficult to establish using exhaustive numerical computa-
tion in the κ-τ-ω parameter space.

(a) (b) (c)

(e)(d)

FIG. 1. A procedure for computing the boundary between stable and unstable helical rods in the κ-τ-ω parameter space. Each ray
extending from the origin intersects the boundary exactly once. This intersection is found by selecting a point ðκ; τ;ωÞ on the ray,
computing the first conjugate point scðκ; τ;ωÞ, and scaling the point by scðκ; τ;ωÞ=L. The entire boundary can be found by repeating this
procedure for all points on a hemisphere of radius 2π. Two examples of this procedure are shown in Fig. 2(a) forL ¼ 1. Figures 2(b)–2(e)
show plots of det½JðsÞ� at each of the four points in Fig. 2(a), which are used to find scðκ; τ;ωÞ. Also shown are the corresponding helical
rod configurations. Although we consider isotropic rods, the depicted rods are drawn as ribbons to show the rod’s twist.
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Computing the set of stable helices.—We now describe a
method for computing the entire boundary between sets of
stable and unstable helices in the κ-τ-ω parameter
space. Consider a rod of length L, and pick a random
point ðκ; τ;ωÞ satisfying κ > 0. After computing scðκ; τ;ωÞ
and setting λ ¼ scðκ; τ;ωÞ=L, we have from (6) that
scðλκ; λτ; λωÞ ¼ L. The point ðλκ; λτ; λωÞ is the unique
intersection between the boundary and the ray that extends
from the origin through the point ðκ; τ;ωÞ.
Using this method, the entire boundary separating stable

and unstable helices for a rod of length L can be computed
using the following steps: 1. Uniformly sample points on the
hemisphere defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þτ2þω2

p
¼2π and κ > 0. 2. For

each point ðκ; τ;ωÞ on the hemisphere, compute the first
conjugate point scðκ; τ;ωÞ. 3. Let λ ¼ scðκ; τ;ωÞ=L and scale
the point to obtain ðλκ; λτ; λωÞ, which lies on the boundary.
Two examples of this procedure are shown in Fig. 1 with

L ¼ 1. In each example, the point ðκ; τ;ωÞ is scaled by a
factor of scðκ; τ;ωÞ=L to obtain a point on the boundary.
Note that varying the length L in the above steps simply
changes the scaling factor λ. This dependence upon L can
be removed by viewing the boundary between stable and
unstable helical rods in a length-scaled parameter space
with coordinates κL, τL, andωL. Whereas each choice of L
produces a different boundary in the κ-τ-ω parameter space,
all of these boundaries collapse onto a single surface in the
κL-τL-ωL parameter space.

Steps 1–3 were followed with L ¼ 1 using 250 000
points on the hemisphere of radius 2π. For each point,
the solution of (5) derived in the companion paper [36]
was used to find det½JðsÞ�, and the first conjugate point
scðκ; τ;ωÞ was found using numerical bisection in s. The
resulting surface that separates stable and unstable helices
within the κL-τL-ωL parameter space is shown in
Fig. 2(a), along with six representative helices of length
L ¼ 1 that lie on the surface. Also shown in Figs. 2(b)–2(d)
are three planar sections defined by τ ¼ 0, ω ¼ 0,
and ω ¼ 2τ. The surface is symmetric under ðκ; τ;ωÞ →
ðκ;−τ;−ωÞ, which corresponds to reversing both the
helical rod’s handedness and direction of twist.
Figure 2(b) corresponds to twisted circular rods, and the

results in this figure agree with previous analysis of such
rods. A closed circular rod (i.e., κL ¼ 2π) becomes
unstable when jωLj ¼ 2

ffiffiffi
3

p
π [at the cusps in Fig. 2(b)],

a result first derived by Michell [39] [cf. [40], Eq. (11)].
Furthermore, in agreement with [27], p. 1373, multicovered
circular rods with κL > 2π are unstable.
In Fig. 2(a), there appears to be a direction along which

all helical rods with sufficiently small curvature are stable.
As shown in Fig. 2(d), helical rods satisfying ω ¼ 2τ are
stable if κ < 2π=L. Therefore, given any circular helix of
length L with arbitrary torsion τ and with curvature κ
satisfying κ < 2π=L, there exists a stable elastic rod of
length L whose centerline traces the helix.

FIG. 2. The boundary between stable and unstable helical rods within the three-dimensional κL-τL-ωL parameter space. In Fig. 2(a),
points within the surface correspond to stable helices, while points outside of the surface correspond to unstable helices. Also shown in
Fig. 2(a) are six representative helical rods that lie on the surface. Although we consider isotropic rods, these representative helical rods
are drawn as ribbons to show the rod’s twist. Figures 2(b)–2(d) show planar sections of the surface in Fig. 2(a) corresponding to τ ¼ 0,
ω ¼ 0, and ω ¼ 2τ.
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Conclusion.—Prior to this work, one of the only general
descriptions of stability of all helical rods appeared in [6,7],
and stated that a helical rod with clamped ends is stable if it
is sufficiently short. In this Letter, we have computed the
maximal length for all stable helical configurations of an
inextensible, unshearable, isotropic, and uniform elastic
rod. For given values of curvature, torsion, and twisting
moment, the boundary in Fig. 2 can be used to determine
this maximal length. These results relied on several
invariance and scaling properties, and would have been
difficult to obtain using exhaustive numerical computation.
Our approach may lead to similar results for other models
of thin elastic structures, such as anisotropic helical rods
[5–7] and helical ribbons [41].
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