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Reduction of Sufficient Conditions for Optimal
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Abstract—In this paper, we apply symmetry reduction
techniques from geometric mechanics to sufficient condi-
tions for local optimality in optimal control problems. After
reinterpreting some previous results for left-invariant prob-
lems on Lie groups, we focus on optimal control problems
with subgroup symmetry. For these problems, the neces-
sary conditions for optimality can be simplified by exploiting
symmetries so as to reduce the number of variables needed
to describe trajectories of the system. We show that suffi-
cient conditions for optimality, based on the non-existence
of conjugate points, can be simplified in an analogous way
to the necessary conditions. We demonstrate these simplifi-
cations by analyzing an optimal control problem that models
a spinning top in a gravitational field, and we give particular
attention to the example of an axisymmetric sleeping top.
The results we derive in this paper allow us to determine
which trajectories of a sleeping top are locally optimal solu-
tions of the optimal control problem, which is a new result
that has not appeared in previous literature.

Index Terms—Conjugate points, Lie groups, optimal
control, sufficient conditions, symmetry reduction.

I. INTRODUCTION

CONSIDER an optimal control problem whose state takes
values on a Lie group. The Pontryagin maximum principle

associates to this optimal control problem a Hamiltonian system
that evolves on the cotangent bundle of the Lie group [1]. Geo-
metric mechanics provides tools for studying such Hamiltonian
systems, and a main theme in mechanics is simplifying Hamil-
tonian systems by exploiting symmetries [2]. Trajectories of a
Hamiltonian system with symmetries evolve on spaces of lower
dimension than the original Hamiltonian system. The equations
of motion of the original Hamiltonian system can often be sim-
plified by working in coordinates for these lower dimensional
spaces. These same simplifications can be obtained for opti-
mal control problems by exploiting symmetries in the necessary
conditions for optimality.
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The focus of this paper is on applying symmetry reduction
to sufficient conditions for optimality, which has received far
less attention than reduction of necessary conditions. The suffi-
cient conditions we use rely on the non-existence of conjugate
points, and symmetries allow us to simplify the computations
for finding conjugate points. We focus on a class of optimal
control problems on Lie groups whose associated Hamiltonian
functions are invariant under the left action of a subgroup of the
Lie group. To account for the symmetries, we apply Lie-Poisson
reduction by stages to the Hamiltonian system associated with
the optimal control problem [3]. We show that the simplifica-
tions that appear in the necessary conditions for optimality also
appear in the sufficient conditions.

To illustrate the application of the reduced sufficient condi-
tions, we analyze an optimal control problem on the Lie group
SO(3) whose cost function is the Lagrangian of a spinning top
in a gravitational field. We analytically determine which tra-
jectories of an axisymmetric sleeping top are locally optimal
solutions of this optimal control problem. Similar results for a
top without gravity have appeared in previous literature. How-
ever, the inclusion of gravity in this analysis, which is made
possible by the reduced sufficient conditions we derive, is a new
result that has not appeared in previous literature.

We begin in Section II by covering related work from geo-
metric mechanics and optimal control. In Section III, we state
necessary and sufficient conditions for optimal control problems
on smooth manifolds. In Section IV, we recall reduced neces-
sary and sufficient conditions for left-invariant optimal control
problems, and we study an optimal control problem that models
a spinning top. Then, in Section V, we provide a reinterpreta-
tion of the results in Section IV that makes clear the connection
between the reduced necessary and sufficient conditions for left-
invariant problems. In Sections VI and VII, we derive reduced
necessary and sufficient conditions, respectively, for optimal
control problems with subgroup symmetry. In Section VIII, we
apply these results to a spinning top in a gravitational field.
Closing remarks are given in Section IX. Readers may benefit
from reviewing the work in [4], which provides a more detailed
account of the topics we recall in Section IV, and from read-
ing [5], [6], which provide additional details on some of the
computations in Sections VI and VII.

II. RELATED WORK

Hamiltonian systems with symmetries have been studied ex-
tensively in the field of geometric mechanics [2]. Symmetry
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reduction allows these systems to be studied in a quotient space
of reduced dimension. When a Hamiltonian system is invariant
with respect to a group action, and the symmetry group con-
tains a normal subgroup, reduction can first be carried out by
the normal subgroup and then by the complement of the normal
subgroup. This procedure, called reduction by stages [3], can
often be applied when the Hamiltonian system evolves on the
cotangent bundle of the semidirect product of a Lie group and
a vector space [7]–[9]. This is the case that we will examine in
this paper.

We focus on Hamiltonian systems that are left-invariant. Fi-
nite dimensional mechanical systems with symmetries, such as
the heavy spinning top and underwater vehicle dynamics, often
fall into this category [8], [10]. Infinite dimensional systems
with symmetries can be right-invariant, such as compressible
fluids, magnetohydrodynamics, and three-dimensional elastic-
ity [8]. Some systems are both left and right-invariant and evolve
on spaces called centered semidirect products [11].

Symmetry reduction techniques can be applied to the nec-
essary conditions provided by Pontryagin’s maximum princi-
ple for optimal control problems. Grizzle and Marcus showed
that symmetry allows optimal feedback laws to be decomposed
into two components, with one component depending upon the
symmetry, and the other component depending upon a lower di-
mensional optimization problem [12]. Symmetries in the max-
imization condition of the maximum principle were studied by
van der Schaft [13], whereas Echeverrı́a-Enrı́quez et al. studied
symmetries in optimal control from a presymplectic viewpoint
[14]. Principal connections in optimal control problems with
symmetries were explored by Ohsawa [15], de León et al. ap-
plied results for vakonomic systems with symmetries to optimal
control [16], and Martı́nez derived a reduced maximum princi-
ple in terms of Lie algebroids [17].

In the case when the state of the optimal control problem takes
values on a Lie group, Lie-Poisson reduction can be applied if
the associated Hamiltonian function is invariant (left or right-
invariant) [18]. This reduction decouples the costate trajectory
in Pontryagin’s maximum principle from the state of the system.
Examples of invariant control problems on Lie groups include
motion planning problems for aircraft [19], [20], autonomous
underwater vehicles [21], Euler’s elastica [22], the Kirchhoff
elastic rod [4], conflict resolution in differential games [23],
biological models of collective motion [24], and time-optimal
control of quantum systems [25].

As an alternative to the maximum principle, a Lagrangian ap-
proach can be taken to exploit symmetries in the necessary
conditions for optimality [26], [27]. These approaches have
been applied to higher order variational problems, with appli-
cations to optimal control of underactuated systems [28], [29].
Lagrangian systems on semidirect product spaces have previ-
ously been studied [7], [30], and Gupta applied these results to
optimal control problems on semidirect products [31]. Optimal
control on semidirect products was also studied by Gay-Balmaz
and Ratiu using a Clebsch formulation [32].

While symmetry reduction has been applied to necessary con-
ditions for optimality, less attention has been given to the role
of symmetries in sufficient conditions. Sufficient conditions in

terms of conjugate points can sometimes be computed if the
Hamiltonian system associated with the optimal control problem
is integrable, e.g., rigid body motion [33], Euler’s elastica [22],
and some sub-Riemannian geometry problems [34], where the
symmetries can simplify these computations. When determining
the optimality of geodesics on a Riemannian or sub-Riemannian
manifold with a left-invariant metric, comparison theorems can
be used to bound conjugate points [35]. For left-invariant op-
timal control problems on Lie groups, it has been shown that
conjugate points can be computed using the reduced system
provided by Lie-Poisson reduction [4]. However, the connec-
tion between this result and the procedure for deriving reduced
necessary conditions for optimality was not explored in [4].

The results in this paper generalize those in a conference
paper by the authors [5]. In the conference paper, we consid-
ered optimal control problems on matrix Lie groups whose cost
functions depended upon a symmetry breaking term (such as
gravity) that was decoupled from the control input. The results
in this paper can be applied to general Lie groups. Furthermore,
we do not impose the decoupled structure on the cost function
in this paper. Also, we give particular attention to establishing a
clear relationship between simplifications in the necessary and
sufficient conditions, which was not explored in the conference
paper.

III. OPTIMAL CONTROL ON SMOOTH MANIFOLDS

In this section, we recall a few results from geometric opti-
mal control. First, in Section III-A, we review some notation
from differential geometry. Then, in Section III-B, we state a
geometric version of Pontryagin’s maximum principle [36]. In
Section III-C, we give a sufficient optimality condition based
on the theory of conjugate points. In later sections, we will spe-
cialize these optimality conditions for optimal control problem
with certain symmetry properties.

A. Smooth Manifolds

For a smooth manifold M , denote the set of all smooth
real-valued functions on M by C∞(M) and the set of all
smooth vector fields on M by X(M). Let v · df and 〈w, v〉
denote the actions of a tangent vector v ∈ Tm M on a func-
tion f ∈ C∞(M) and a tangent covector w ∈ T ∗

m M on v, re-
spectively. The function X[f ] ∈ C∞(M) denotes the action
of a vector field X ∈ X(M) on a function f ∈ C∞(M), and
satisfies

X[f ](m) = X(m) · df

for all m ∈ M . For X,Y ∈ X(M), the Jacobi-Lie bracket pro-
duces the vector field [X,Y ] that satisfies

[X,Y ][f ] = X[Y [f ]] − Y [X[f ]]

for all f ∈ C∞(M). The pushforward of a smooth map F :
M → N , where N is a smooth manifold, is the linear map
Tm F : Tm M → TF (m )N that satisfies

Tm F (v) · df = v · d(f ◦ F )
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for all v ∈ Tm M and f ∈ C∞(N). The pullback of F at m ∈ M
is the dual map T ∗

m F : T ∗
F (m )N → T ∗

m M that satisfies

〈T ∗
m F (w), v〉 = 〈w, Tm F (v)〉

for all v ∈ Tm M and w ∈ T ∗
F (m )N . If there exists a non-zero

v ∈ Tm M such that Tm F (v) = 0, then we say F is degenerate
at m ∈ M . The canonical symplectic form on T ∗M is

Ω =
n∑

i=1

dqi ∧ dpi,

where (q, p) are local coordinates on T ∗M and n = dimM . The
Poisson bracket generated by the canonical symplectic form
on T ∗M is denoted by {·, ·} : C∞(T ∗M) × C∞(T ∗M) →
C∞(T ∗M) and satisfies

{f, g} = Ω(Xf ,Xg )

for all f, g ∈ C∞(T ∗M), where Xf satisfies

Ω(Xf (m), v) = v · df(m)

for all m ∈ M and v ∈ Tm M . We call Xf the Hamiltonian vec-
tor field of f ∈ C∞(T ∗M). Finally, let π : T ∗M → M denote
the projection map π(m,w) = m for all w ∈ T ∗

m M .

B. Necessary Conditions

We now consider an optimal control problem whose state
takes values on a smooth manifold M . Let g : M × U → R
and f : M × U → TM be smooth maps where U ⊂ Rm for
some m > 0. Consider the optimal control problem

minimize
q ,u

∫ tf

0
g(q(t), u(t)) dt

subject to q̇(t) = f(q(t), u(t)) for all t ∈ [0, tf ]

q(0) = q0 , q(tf ) = qf

(1)

for some fixed tf > 0, where q0 , qf ∈ M are fixed and (q, u) :
[0, tf ] → M × U . Necessary conditions for (q, u) to be a lo-
cal optimum of (1) are provided by Pontryagin’s maximum
principle [36]. To apply the maximum principle, we define the
parameterized Hamiltonian Ĥ : T ∗M × R × U → R by

Ĥ(q, p, k, u) = 〈p, f(q, u)〉 − kg(q, u),

where p ∈ T ∗
q M . Theorem 1 provides necessary conditions that

local optima of (1) must satisfy.
Theorem 1 (Necessary Conditions) Suppose (q, u): [0, tf ]

→ M × U is a local optimum of (1). Then, there exists k ≥ 0
and p : [0, tf ] → T ∗

q(t)M such that (q, p) is an integral curve
of the time-varying Hamiltonian vector field XH , where
H : T ∗M × R → R is given by H(q, p, t) = Ĥ(q, p, k, u(t)),
and (q, p) satisfies

H(q(t), p(t), t) = max
u∈U

Ĥ(q(t), p(t), k, u) (2)

for all t ∈ [0, tf ]. If k = 0, then p(t) �= 0 for all t ∈ [0, tf ].
Proof: See Theorem 12.10 in [1]. �

The integral curve (q, p) is called an abnormal extremal when
k = 0 and a normal extremal otherwise. If k �= 0, we may as-
sume k = 1. We call (q, u) abnormal if it is the projection of an
abnormal extremal. We call (q, u) normal if it is the projection
of a normal extremal and it is not abnormal.

C. Sufficient Conditions

The conditions in Theorem 1 are necessary for a trajec-
tory (q, u) to be a local optimum of (1). Second order con-
ditions are needed to ensure (q, u) is indeed a local minimum.
Theorem 2 provides sufficient optimality conditions based on
the non-existence of conjugate points.

Theorem 2 (Sufficient Conditions) Suppose (q,p): [0, tf ] →
T ∗M is a normal extremal of (1) and ∂2Ĥ/∂u2 < 0 in a
neighborhood of the curve (q, p). Assume that the maximized
Hamiltonian function

H(q, p) = max
u∈U

Ĥ(q, p, 1, u) (3)

is defined and smooth on T ∗M . Also assume that XH is com-
plete and that there exists no other integral curve (q′, p′) of XH

satisfying q′(t) = q(t) for all t ∈ [0, tf ]. Let ϕt : T ∗M → T ∗M
be the flow of XH and define the endpoint map φt : T ∗

q0
M → M

by φt(w) = π ◦ ϕt(q0 , w). Define u : [0, tf ] → U so u(t) is the
unique maximizer of (3) at (q(t), p(t)). Then (q, u) is a local
optimum if there exists no t ∈ (0, tf ] for which φt is degenerate
at p(0).

Proof: See Theorem 21.8 in [1]. �
A time at which φt is degenerate is called a conjugate time,

and the endpoint map φt is degenerate when its Jacobian matrix
is singular. To compute the integral curves (q, p) in Theorem 1 or
establish non-degeneracy of the endpoint map φt in Theorem 2,
we could introduce local coordinates on T ∗M . Integral curves
could then be found by solving Hamilton’s canonical equations

q̇i = Hpi
ṗi = −Hqi , (4)

where (qi, pi) are local coordinates on T ∗M with i =
1, . . . , n = dim M , and subscripts denote partial derivatives.

In order to establish local optimality of an integral curve,
let J(t) denote the Jacobian matrix of the endpoint map φt in
this coordinate system, i.e., J(t) is the Jacobian matrix of the
state q(t) with respect to the initial costate p(0), and let M(t)
denote the Jacobian matrix of the costate p(t) with respect to
the initial value of the costate p(0). These matrices can be found
by solving the time-varying matrix differential equations

J̇ = (Hqp)J + (Hpp)M Ṁ = −(Hqq )J − (Hpq )M (5)

with the initial conditions M(0) = I and J(0) = 0. The end-
point map φt is degenerate if det(J(t)) = 0.

Note that in (4), the evolution of the costate p could depend
upon both the state q and the costate p, depending upon the
structure of the Hamiltonian. Similarly, the evolution of q could
depend upon both q and p. Analogously, note that in (5), the
evolution of the matrix M could depend upon both M and J.
The evolution of the matrix J could also depend upon both M
and J. Also observe that the coefficient matrices in (5) could be a
function of both q and p. In the following sections, we will show
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that symmetries allow us to decouple some of these differential
equations and that this decoupling occurs in analogous ways in
the necessary and sufficient conditions.

IV. LEFT-INVARIANT OPTIMAL CONTROL PROBLEMS

Theorems 1 and 2 provide coordinate-free conditions that
local solutions of (1) must satisfy. As described in the previous
section, these conditions can be evaluated by introducing local
coordinates on T ∗M . However, if the Hamiltonian function (3)
possesses symmetries, we can use these symmetries to simplify
these computations by reducing the number of variables needed
to describe trajectories of the system.

In this section, we review some results for the case when the
Hamiltonian function (3) is left-invariant. We begin by recall-
ing some facts about Lie Groups in Section IV-A. In Sections
IV-B and IV-C, we give reduced statements of the necessary
and sufficient conditions for optimality in Theorems 1 and 2,
respectively. Then, in Section IV-D, we consider a left-invariant
optimal control problem on the Lie group SO(3)

A. Lie Groups

Let G be an n-dimensional Lie group with identity element
e ∈ G. Let g = TeG be the Lie algebra associated with G and
g∗ = T ∗

e G its dual. For any q ∈ G, define the left translation
map Lq : G → G by

Lq (r) = qr

for all r ∈ G. A function H ∈ C∞(T ∗G) is left-invariant if

H(r, T ∗
r Lq (w)) = H(s, w) (6)

for all w ∈ T ∗
s G and q, r, s ∈ G satisfying s = Lq (r). For any

ζ ∈ g, let Xζ be the vector field that satisfies

Xζ (q) = TeLq (ζ)

for all q ∈ G. Define the Lie bracket [·, ·] : g × g → g by

[ζ, η] = [Xζ ,Xη ](e)

for all ζ, η ∈ g. For any ζ ∈ g, the adjoint operator adζ : g → g
is defined by the Lie bracket

adζ (η) = [ζ, η],

and the coadjoint operator ad∗
ζ : g∗ → g∗ is given by its dual

map and determined by

〈ad∗
ζ (μ), η〉 = 〈μ, adζ (η)〉

for all η ∈ g and μ ∈ g∗. The functional derivative of h ∈
C∞(g∗) at μ ∈ g∗ is the element δh/δμ ∈ g that satisfies

lim
s→0

h(μ + sδμ) − h(μ)
s

=
〈

δμ,
δh

δμ

〉

for all δμ ∈ g∗. Let {X1 , . . . , Xn} be a basis for g and let
{X1 , . . . , Xn} be the dual basis for g∗ that satisfies 〈Xi,Xj 〉 =
δi

j for i, j ∈ {1, . . . , n}, where δi
j is the Kronecker delta. We

write ζi to denote the ith component of ζ ∈ g with respect to

this basis. For i, j ∈ {1, . . . , n}, define the structure constants
Ck

ij ∈ R for our choice of basis by

[Xi,Xj ] =
n∑

k=1

Ck
ijXk . (7)

B. Left-Invariant Necessary Conditions

We now revisit the statement of necessary conditions for
the optimal control problem (1) in the case where the smooth
manifold M is a Lie group G and the Hamiltonian function
H is left-invariant under the cotangent lift of left translations.
Theorem 1 implies the existence of an integral curve (q, p) in
the cotangent bundle T ∗G. The following theorem implies the
existence of a corresponding integral curve μ in g∗.

Theorem 3 (Reduction of Necessary Conditions) Suppose
(q, u): [0, tf ] → M × U is a local optimum of (1). Assume
the time-varying Hamiltonian function H : T ∗M × R → R
defined in Theorem 1 is both smooth and left-invariant for
all t ∈ [0, tf ], and denote the restriction of H to g∗ by h
= H|g∗×[0,tf ] . Then, the integral curve (q, p) : [0, tf ] → T ∗M
described in Theorem 1 satisfies

p(t) = T ∗
q(t)Lq(t)−1 (μ(t)) q̇ = Xδh/δμ(q) (8)

for all t ∈ [0, tf ], where μ : [0, tf ] → g∗ is the solution of the
Lie-Poisson equations

μ̇ = ad∗
δh/δμ(μ) (9)

with initial condition μ(0) = T ∗
e Lq0 (p(0)).

Proof: See Theorem 13.4.4 in [2]. �
Since g∗ is a vector space, the trajectory μ described by (9)

can be evaluated by solving a system of ordinary differential
equations. Taking μ1(t), . . . , μn (t) as coordinates of μ(t), (9)
is equivalent to (see [18])

μ̇i = −
n∑

j=1

n∑

k=1

Ck
ij

δh

δμj
μk . (10)

C. Left-Invariant Sufficient Conditions

We now revisit the sufficient conditions in Theorem 2 for
left-invariant optimal control problems. As shown in [4], non-
degeneracy of the endpoint map φt can be established by work-
ing with the variables μi for i = 1, . . . , n from the reduced
necessary conditions in Theorem 3.

Theorem 4 (Reduction of Sufficient Conditions) Suppose
(q,p): [0, tf ] → T ∗M is a normal extremal of (1), and assume
the conditions in Theorem 2 hold. Also assume the Hamiltonian
function H : T ∗M → R defined in Theorem 2 is left-invariant,
and let h = H|g∗ be the restriction of H to g∗. Let μ be the
solution of (9) with initial condition μ(0) = T ∗

e Lq0 (p(0)), and
define the matrices F,G,H ∈ Rn×n by

Fi
j = − ∂

∂μj

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

Gi
j =

∂

∂μj

δh

δμi
Hi

j = −
n∑

r=1

δh

δμr
Ci

rj .
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Solve the (linear, time-varying) matrix differential equations

Ṁ = FM J̇ = GM + HJ (11)

with initial conditions M(0) = I and J(0) = 0. Define u :
[0, tf ] → U as in Theorem 2. Then (q, u) is a local optimum if
there exists no t ∈ (0, tf ] for which det(J(t)) = 0.

Proof: See Theorem 4 in [4]. �
Compared with the necessary and sufficient conditions in

Theorems 1 and 2, we see that the conditions in Theorems 3
and 4 have some advantages. Whereas the differential equa-
tions for the state q and the costate p were possibly coupled in
Theorem 1, as shown in (4), the Lie-Poisson equations (9) in
Theorem 3 governing the reduced costate μ are decoupled from
the state q. Similarly, the differential equation (11) in Theo-
rem 4 for the matrix M is decoupled from J, whereas they were
coupled in Theorem 2, as shown in (5). In Section V, we will
further explore the decouplings that occur through reduction of
the necessary and sufficient conditions.

D. The Torque-Free Spinning Top

To demonstrate the application of the conditions in
Theorems 3 and 4, consider a spinning top that does not ex-
perience external torques. The motion of the top corresponds
to a trajectory on the matrix Lie group SO(3) that extremizes
(but does not necessarily minimize) the top’s action functional.
From a mechanics viewpoint, we are often concerned with find-
ing equations of motion and solving them as an initial value
problem. We are not typically concerned with finding trajecto-
ries that minimize a system’s action functional subject to given
boundary conditions. However, to show how Theorems 3 and 4
can be applied, we will search for trajectories of the spinning
top that satisfy given boundary conditions and minimize the
top’s action functional. We also note that problems similar to
the one considered in this section have previously been stud-
ied in the context of optimal attitude control of spacecraft and
satellites [37].

The optimal control problem that corresponds to the spinning
top is given by

minimize
q ,u

∫ tf

0

(
1
2

3∑

i=1

ciu
i2

)
dt

subject to q̇ = q

(
3∑

i=1

uiXi

)

q(0) = q0 , q(tf ) = qf

(12)

for some fixed q0 , qf ∈ SO(3) and tf > 0, where
(q, u) : [0, tf ] → SO(3) × R3 . The matrices Xi are de-
fined by Xi = êi , where ei are the standard basis elements of
R3 and ̂: R3 → so(3) is the map satisfying âb = a × b for all
a, b ∈ R3 . Since SO(3) is a matrix Lie group, we have used qζ
to denote the left action of q ∈ G = SO(3) on ζ ∈ g = so(3)
in the dynamic constraints in (12), where the Lie algebra so(3)
is the set of all 3 × 3 skew-symmetric matrices. The positive
constants c1 , c2 , and c3 play the role of weights in the cost
function and correspond to the moments of inertia of the top.

The control input u is the angular velocity of the top, and the
integrand in the cost function in (12) is the kinetic energy of the
top. For each q ∈ SO(3), the right hand side of the dynamic
constraint in (12) spans the tangent space TqSO(3), and the
system is therefore controllable [1].

Applying Theorem 1 gives that local extrema of (12) corre-
spond to integral curves of the Hamiltonian vector field XH ,
where H : T ∗SO(3) → R is defined by

Ĥ(q, p, k, u) =

〈
p, q

(
3∑

i=1

uiXi

)〉
− k

2

(
3∑

i=1

ciu
i2

)

and

H(q, p) = max
u

Ĥ(q, p, k, u).

In the abnormal case (that is, k = 0), Ĥ is extremized in
u when p = 0. Therefore, by Theorem 1, there are no abnor-
mal extremals. In the normal case, if we take k = 1, then the
maximum is achieved when

ui = c−1
i 〈p, qXi〉 (13)

for i ∈ {1, 2, 3}. This is indeed a maximum since

∂2Ĥ/∂u2 = −diag(c1 , c2 , c3) < 0.

The maximized Hamiltonian function is then

H(q, p) =
1
2

3∑

i=1

c−1
i 〈p, qXi〉2 .

Note that for any p ∈ T ∗
q SO(3) and q, g, r ∈ SO(3) satisfy-

ing q = gr, we have

H(r, T ∗
r Lg (p)) =

1
2

3∑

i=1

c−1
i 〈T ∗

r Lg (p), g−1qXi〉2

=
1
2

3∑

i=1

c−1
i 〈p, g

(
g−1qXi

)〉2

=
1
2

3∑

i=1

c−1
i 〈p, qXi〉2

= H(q, p).

(14)

Therefore, H is left-invariant and we can apply Theorem 3. The
reduced Hamiltonian on so∗(3) is given by

h(μ) = H(e, μ) =
1
2

3∑

i=1

c−1
i μ2

i .

The Lie-Poisson equations (9) for the reduced Hamiltonian h
are given by

μ̇ = μ × u, (15)

where ui = c−1
i μi . In this case, the coadjoint operator in (9) is

the cross product after an identification of so(3) with R3 using
the map ̂ : R3 → so(3).
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Candidate solutions of (12) are obtained by finding an initial
value of μ(0) ∈ so∗(3) ∼= R3 that places q(tf ) at qf . Such so-
lutions are only guaranteed to be extrema of (12). It is clear that
that μ ∈ g∗ (and hence p ∈ T ∗SO(3)) is uniquely determined
by (q, u), and in this case, XH is complete. Therefore, we may
apply Theorem 4 to determine which extrema are actually local
minima.

Computing the matrices F, G, and H in Theorem 4 (and
defining cij = (c−1

i − c−1
j )) gives

F =

⎡

⎢⎣
0 c32μ3 c32μ2

c13μ3 0 c13μ1

c21μ2 c21μ1 0

⎤

⎥⎦ (16)

G = diag(c−1
1 , c−1

2 , c−1
3 ) H = −û.

After finding μ(0) ∈ so∗(3) that places q(tf ) at qf , (11) can
be solved with the initial conditions M(0) = I and J(0) = 0. If
det(J(t)) �= 0 for all t ∈ (0, tf ], then the solution corresponding
to this choice of μ(0) ∈ so∗(3) is a local minimum of (12).

We now consider a top that is axisymmetric with c2=c3=1.
With these parameters, setting μ2 = μ3 = 0 and letting μ1 be
arbitrary gives a fixed point of the system (15). This fixed point
corresponds to the top rotating about its axis of symmetry. Solv-
ing the linear system (11) at this fixed point, which now becomes
time-invariant, and computing the determinant of J(t) gives

det (J(t)) =
4t

c1μ2
1

sin2
(μ1

2
t
)

.

We see that if |μ1tf | < 2π, then this trajectory of the top
is locally optimal, since det (J(t)) > 0 for all t ∈ (0, tf ]. If
|μ1tf | > 2π, this trajectory of the top is not locally optimal.

These results for the axisymmetric top are consistent with
previous studies of conjugate points in rigid body motion, such
as [33], in which the conjugate locus for an axisymmetric body
was computed, and [38], in which conjugate points for a sleeping
but non-axisymmetric body were computed. In Section VIII, we
derive similar results for a top in a gravitational field, which have
not appeared in previous literature.

V. REINTERPRETATION OF THE OPTIMALITY CONDITIONS FOR

LEFT-INVARIANT PROBLEMS

The key insight in Theorem 3 is that by taking an integral
curve (q, p) of XH and left-translating the costate to the iden-
tity to obtain μ(t) = T ∗

e Lq(t)(p(t)), we find that μ satisfies the
ordinary differential equation (9), which is decoupled from the
state q. This same procedure was used to prove Theorem 4 in
[4], although this connection between the reduced necessary and
sufficient conditions was not made explicit. In this section, we
explicitly connect the results in Theorems 3 and 4.

Recall from Theorem 2 that we need to determine if the
map φt : T ∗

q0
G → G is degenerate at p(0) for some t ∈ (0, tf ].

In other words, for each t ∈ (0, tf ], we need to determine if
the image of the pushforward Tp(0)φt spans the tangent space
Tq(t)G. Following the approach in Theorem 3 to decouple the
state and the costate, we pre- and post-compose Tp(0)φt with
left-translation from and to the identity, respectively. Then we

evaluate this map at each Xj ∈ g∗, which produces the Lie
algebra element

ηj (t) = Tq(t)Lq(t)−1

(
Tp(0)φt

(
T ∗

q0
Lq−1

0
(Xj )

))
. (17)

After defining the matrix Ji
j (t) = ηi

j (t), we can check for de-
generacy of the endpoint map φt by checking the determinant of
J(t). As shown in Theorem 4, the matrix J(t) can be computed
by solving a matrix differential equation that only depends upon
the reduced costate μ. Just as the costate p can be reconstructed
from the reduced costate μ using (8) in Theorem 3, the Jacobian
of the endpoint map φt can be reconstructed by left-translating
each ηj (t) to q(t) for j = 1, . . . , n, i.e., by TeLq(t)(ηj (t)). The
reconstruction of ηj (t) provides a variation along the curve
q(t) in G, and such variations have been used to establish
first order necessary conditions in variational problems with
symmetries [39].

At the end of Section III-C, we saw that when working in
local coordinates, the differential equations (4) were coupled
in a similar way to the matrix differential equations (5). Now
note the similarities between the differential equations (8) and
(9) in Theorem 3 and the matrix differential equations (11) in
Theorem 4. The evolution of the covector μ is decoupled from
the state q in (9), whereas the evolution of q, given by (8),
depends on both q and μ. Analogously, the matrix M is de-
coupled from J in (11), whereas the evolution of J depends
upon both J and M. Furthermore, the coefficient matrices in
(11) depend only upon the reduced costate μ. These simpli-
fications were derived by applying the reduction procedure
in Theorem 3 to the sufficient conditions in Theorem 2. We
therefore call the conditions in Theorem 4 reduced sufficient
conditions.

The procedure for exploiting symmetries in necessary and
sufficient conditions for optimality is outlined in Fig. 1, along
with the corresponding theorems in this paper. In this figure,
solid arrows denote standard results for optimal control prob-
lems (such as those in Section III) that can be applied to problems
without symmetry. The dotted arrows denote previous work on
symmetry in necessary conditions for optimality, some of which
is described in Section II. Our focus is on deriving reduced
sufficient conditions and equating the reduced and unreduced
sufficient conditions, i.e., the dashed arrows, which has received
less consideration in previous literature than the necessary con-
ditions. In the remainder of this paper, we extend the results
in this section by exploring the analogous simplifications in re-
duced necessary and sufficient conditions for problems that are
not left-invariant, but are invariant under a subgroup of the Lie
group G.

VI. NECESSARY CONDITIONS FOR PROBLEMS WITH

SUBGROUP SYMMETRY

In Section IV, we assumed that the Hamiltonian function
provided by the maximum principle was left-invariant under
an action of the Lie Group G. In this section, we consider the
case when the Hamiltonian is left-invariant with respect to a
subgroup of G. As was done in Theorem 3, we will derive a
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Fig. 1. The procedure for applying symmetry reduction to optimal control problems. Solid arrows represent standard results from optimal control
theory, such as those in Section III. Dotted arrows represent previous work, covered in Section II, on reduction of necessary conditions. Dashed
arrows represent the focus of this paper, which is reduction of sufficient conditions.

reduced Hamiltonian system whose integral curves correspond
to integral curves of the Hamiltonian vector field XH on T ∗G.

In Section VI-A, we motivate the need to consider opti-
mal control problems with subgroup symmetry by examining a
generalization of the optimal control problem in Section IV-D.
Then, in Section VI-B, we review semidirect products and Lie
group representations. In Section VI-C, we give reduced neces-
sary conditions for optimality when the Hamiltonian function is
left-invariant with respect to a subgroup of G.

A. The Heavy Spinning Top

Consider again the optimal control problem (12) (i.e., the
same dynamic constraints and boundary conditions as (12)), but
now with the cost function

g(q, u) =
1
2

3∑

i=1

ciu
i2 + χ0(qν), (18)

where ν ∈ R3 is a constant vector and χ0 : R3 → R is a linear
map. Since the map χ0 is linear, it can be represented by a
constant three-dimensional row vector. This cost function is
the Lagrangian of a spinning top in a gravitational field, where
ν is a vector pointing from the fixed point of the top to the
top’s center of mass, and χ0 points in the direction of gravity
and has magnitude equal to the weight of the top. The control
input u and the constants ci still have the same interpretation
as in Section IV-D, i.e., u is the angular velocity of the top, the
constants ci are the moments of inertia of the top, and the first
term in the cost function (18) is the kinetic energy of the top.
The second term in the cost function (18), which did not appear
in the problem (12), is the negative of the top’s gravitational
potential energy.

The Hamiltonian function depends upon the two parameters
ν (which is a vector) and χ0 (which is a linear map). As we will
see in Section VI-C, the parameter χ0 will become important
when we apply symmetry reduction to this system. Therefore,
to denote the dependence of the Hamiltonian function on the
parameter χ0 , we will denote the Hamiltonian by Hχ0 . Applying
Theorem 1 gives that local extrema of (12) with the cost function
(18) correspond to integral curves of the Hamiltonian vector field

XHχ 0
, where

Ĥχ0 (q, p, k, u) =

〈
p, q

(
3∑

i=1

uiXi

)〉
− kg(q, u)

and

Hχ0 (q, p) = max
u

Ĥχ0 (q, p, k, u).

The abnormal case for this problem is identical to the abnormal
case in Section IV-D, so there are no abnormal extremals. In the
normal case, when k = 1, the maximum is again given by (13).
The maximized Hamiltonian function is then

Hχ0 (q, p) =
1
2

3∑

i=1

c−1
i 〈p, qXi〉2 − χ0(qν). (19)

Using the computations in (14), note that for any p ∈ T ∗
q SO(3)

and q, g, r ∈ SO(3) satisfying q = gr, we have

Hχ0 (r, T
∗
r Lg (p)) =

1
2

3∑

i=1

c−1
i 〈p, qXi〉2 − χ0(g−1qν).

We see that H is left-invariant under the elements of SO(3)
that satisfy χ0g

−1 = χ0 . These elements form a subgroup of
G, called the isotropy group of χ0 . In the remainder of this
section, we will give necessary conditions for problems with
this subgroup symmetry property.

B. Semidirect Products

Let V be an l-dimensional vector space and let ρ : G →
GL(V ) be a left representation of G on V , i.e., ρ is a smooth
group homomorphism that assigns to each g ∈ G a linear map
ρ(g) : V → V satisfying

ρ(g1g2) = ρ(g1)ρ(g2)

for all g1 , g2 ∈ G. The associated left and right representations
of G on V ∗, denoted ρ∗ and ρ∗, respectively, are

ρ∗(g) =
[
ρ(g−1)

]∗
ρ∗(g) = [ρ(g)]∗ ,
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where [ ]∗ denotes the dual transformation. The induced Lie
algebra representation ρ′ : g → End[V ] of ζ ∈ g satisfies

ρ′(ζ)(v) =
d

dt
[ρ(exp(tζ))(v)] |t=0

for all v ∈ V , where exp : g → G is the exponential map. De-
note by Gχ the isotropy group of χ ∈ V ∗, i.e.,

Gχ = {g ∈ G|ρ∗(g)χ = χ}. (20)

Let S = G × V be the semidirect product of G and V with
multiplication and inversion given by

(g1 , v1)(g2 , v2) = (g1g2 , v1 + ρ(g1)v2)

(g1 , v1)−1 = (g−1
1 ,−ρ(g−1

1 )v1)

for all g1 , g2 ∈ G and v1 , v2 ∈ V . The Lie algebra of S is s =
g × V with the Lie bracket

[(ζ1 , v1), (ζ2 , v2)] = ([ζ1 , ζ2 ], ρ′(ζ1)v2 − ρ′(ζ2)v1)

for all ζ1 , ζ2 ∈ g and v1 , v2 ∈ V . The left action of S on T ∗S is
given by

T ∗
(r,z )L(q ,u)(s, w, v, χ) = (r, T ∗

r Lq (w), z, ρ∗(q)χ) (21)

for all u, v, z ∈ V , χ ∈ V ∗, w ∈ T ∗
s G, and q, s, r ∈ G satisfying

s = Lq (r) and z = u + ρ(q−1)v [8].

C. Reduction of Necessary Conditions

We now consider the statement of necessary conditions in
Theorem 1 in the case when the Hamiltonian function is left-
invariant under the action of a subgroup of G. In many situations,
the Hamiltonian function depends upon a parameter in the dual
of some vector space, and the subgroup under which the Hamil-
tonian is left-invariant is the isotropy group of this parameter.
For such systems, Theorem 5 provides necessary conditions
similar to those in Theorem 3.

Before stating Theorem 5, we provide a motivation for the
results contained in the theorem. The key idea of the theorem
is to embed a Hamiltonian system with subgroup symmetry
within an extended Hamiltonian system that is left-invariant.
This embedding procedure has been applied to many problems
in geometric mechanics with subgroup symmetry [7]–[9], and
Theorem 5 applies this idea to the necessary conditions given
in Theorem 1. To see how this is done, suppose a Hamiltonian
function depends smoothly on a parameter χ0 ∈ V ∗ and is left-
invariant under the action of Gχ0 on T ∗G, so that (6) holds
when q ∈ Gχ0 (recall from (20) that Gχ0 is the isotropy group
of χ0). We denote the Hamiltonian by Hχ0 : T ∗G → R to note
the dependence on χ0 ∈ V ∗.

The procedure for applying reduction to such Hamiltonian
systems is to consider the augmented Hamiltonian function H :
T ∗S → R defined by H(q, p, v, χ) = Hχ(q, p), where T ∗S =
T ∗G × V × V ∗. Since Hχ(q, p) is independent of the variable
v ∈ V , we ignore the V component of the left action of S on
T ∗S and define H to be constant in the variable v ∈ V [7]. We
then show that H : T ∗S → R is left-invariant under the action
of S, i.e., using (21), we show that

H(r, T ∗
r Lq (w), v, ρ∗(q)χ) = H(s, w, v, χ) (22)

for all v ∈ V , χ ∈ V ∗, w ∈ T ∗
s G, and q, r, s ∈ G satisfying

s = Lq (r). An example of this computation for a specific Hamil-
tonian function is shown in (35) of Section VIII.

The original Hamiltonian system on T ∗G, with Hamiltonian
Hχ0 , is now embedded within an extended Hamiltonian system
on T ∗S, with Hamiltonian H . Since the Hamiltonian function
H is left-invariant, we can apply reduction to the Hamiltonian
system on T ∗S. Note that if (22) holds and q ∈ Gχ0 , then χ0 =
ρ∗(q)χ0 by (20) and

Hχ0 (r, T
∗
r Lq (w)) = H(r, T ∗

r Lq (w), v, χ0)

= H(r, T ∗
r Lq (w), v, ρ∗(q)χ0)

= H(s, w, v, χ0)

= Hχ0 (s, w)

for all w ∈ T ∗
s G, r, s ∈ G, and q ∈ Gχ0 satisfying s = Lq (r).

Therefore (22) implies that Hχ0 is left-invariant under the action
of Gχ0 on T ∗G.

If (22) holds, then the family of Hamiltonians {Hχ |χ ∈ V ∗}
induces a reduced Hamiltonian h on s∗. As shown in the fol-
lowing theorem, the existence of an integral curve (μ, χ) in s∗

implies the existence of a corresponding integral curve (q, p) of
XHχ 0

in the cotangent bundle T ∗G.
Theorem 5 (Semidirect Product Reduction of Necessary

Conditions) Suppose (q, u): [0, tf ] → M × U is a local
optimum of (1). Assume the time-varying Hamiltonian
function defined in Theorem 1, which we now denote by
Hχ0 : T ∗G × [0, tf ] → R, is smooth and depends smoothly
on the parameter χ0 ∈ V ∗. In addition, let S = G × V be
the semidirect product between G and V , and suppose that
the Hamiltonian function H : T ∗S × [0, tf ] → R, defined by
H(q, p, v, χ, t) = Hχ(q, p, t), is left-invariant under the action
of S for all t ∈ [0, tf ]. Denote the restriction of H to s∗ by
h = H|s∗×[0,tf ] . Then, the integral curve (q, p) : [0, tf ] → T ∗M
described in Theorem 1 satisfies

p(t) = T ∗
q(t)Lq(t)−1 (μ(t)) q̇ = Xδh/δμ(q) (23)

for all t ∈ [0, tf ], where (μ, χ) : [0, tf ] → s∗ is the solution of

μ̇ = ad∗
δh/δμ(μ) −

(
ρ′δh/δχ

)∗
χ (24)

χ̇ = ρ′ (δh/δμ)∗ χ (25)

with initial conditions μ(0) = T ∗
e Lq0 (p(0)) and χ(0) =

ρ∗(q0)χ0 , where ρ′δh/δχ : g → V satisfies

ρ′δh/δχ(ζ) = ρ′(ζ)
δh

δχ

for all ζ ∈ g.
Proof: See Theorem 3.4 in [8]. �
As was the case in Theorem 3, writing (24) and (25) in coor-

dinates allows us to find μ and χ by solving a system of ordinary
differential equations. From (10), we know the structure of the
coadjoint term in (24). Next, since χ ∈ V ∗ and dim(V ) = l, we
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may represent χ as an l-dimensional row vector. We then have
(
ρ′δh/δχ

)∗
(χ)(·) = χ

(
ρ′(·) δh

δχ

)
∈ g∗.

Therefore, we have

μ̇i = −
n∑

j=1

n∑

k=1

Ck
ij

δh

δμj
μk − χ

(
ρ′ (Xi)

δh

δχ

)
.

Expanding the second term in the above expression gives

μ̇i = −
n∑

j=1

n∑

k=1

Ck
ij

δh

δμj
μk −

l∑

j=1

l∑

k=1

χj [ρ′(Xi)]
j
k

δh

δχk
. (26)

We can also write (25) in coordinates as

χ̇i =
l∑

j=1

χj [ρ′ (δh/δμ)]j i . (27)

Also note that from (23) we have

d

dt
ρ(q) = ρ(q)ρ′(δh/δμ),

and therefore

d

dt
(ρ(q)∗χ0) =

d

dt
(χ0(ρ(q)))

= χ0

(
d

dt
ρ(q)

)

= χ0 (ρ(q)ρ′(δh/δμ))

= ρ′(δh/δμ)∗χ0 (ρ(q))

= ρ′(δh/δμ)∗ (ρ(q)∗χ0) .

This shows that

χ(t) = ρ(q(t))∗χ0 (28)

solves (25) with the correct initial condition.
We now have two ways of finding integral curves of the

Hamiltonian vector field XHχ 0
. We could solve for the reduced

variables (μ, χ) using the differential equations (24) and (25),
and then reconstruct the trajectory (q, p) using (23). This is anal-
ogous to the result in Theorem 3, where we first solved for the
reduced variable μ and then reconstructed the trajectory (q, p).
Now, due to the subgroup symmetry, we have to keep track of
the extra reduced variable χ. Alternatively, we could substitute
the expression in (28) for χ into the differential equation (24).
This would explicitly show how the subgroup symmetry of the
problem couples the reduced costate μ with the state q. In the
next section, we will show that the sufficient conditions can
be computed in two alternative ways that are analogous to the
necessary conditions.

Before moving on, we make one note about the notation used
in this section. In the differential equation (24) in Theorem 5,
we have a term of the form (ρ′v )∗ χ with v ∈ V and χ ∈ V ∗.
In previous work, the diamond operator was used to denote this
function [7], i.e., (ρ′v )∗ χ = v � χ. Readers should keep this no-
tation in mind when comparing Theorem 5 to previous results in
geometric mechanics. However, when we state sufficient con-
ditions for problems with subgroup symmetry in Section VII

and when we prove these conditions in the appendices, it will
be more convenient to work with the notation we have used in
Theorem 5.

VII. SUFFICIENT CONDITIONS FOR PROBLEMS WITH

SUBGROUP SYMMETRY

In the previous section, we found reduced necessary condi-
tions for optimal control problems with subgroup symmetry.
In this section, we give reduced sufficient conditions for such
problems. We do this by deriving a system of matrix differential
equations, similar to those in (11), that can be evaluated to es-
tablish non-degeneracy of the endpoint map φt from Theorem 2.
The reduced sufficient conditions rely on the gradients of the
state q and the reduced variables μ and χ with respect to the
initial value of μ at t = 0. Formulas for computing these gra-
dients are derived in Section VII-A. We then state the reduced
sufficient conditions in Section VII-B. In Section VII-C, we
compare the structure of the sufficient conditions with the nec-
essary conditions found in Theorem 5.

A. Computation of the State and Costate Gradients

We now derive a set of differential equations for computing
the gradients of the state q and the reduced variables μ and χ
with respect to the initial value of μ at time t = 0. These gradi-
ents will be used to establish the reduced sufficient conditions
in Section VII-B. In this section, we will use Φt : s∗ → s∗ to
denote the flow of the system (24)–(25), i.e., Φt maps an initial
condition (μ(0), χ(0)) ∈ s∗ to (μ(t), χ(t)) ∈ s∗. Also recall that
{X1 , . . . , Xn} is a basis for the Lie algebra g and {X1 , . . . , Xn}
is the corresponding dual basis for g∗. These bases are used in
Lemmas 1 and 2. We first compute the gradients of the reduced
variables μ and χ.

Lemma 1 Suppose (q,p):[0, tf ] → T ∗M is a normal ex-
tremal of (1), and assume the conditions in Theorem 2 hold. Also
assume the Hamiltonian function defined in Theorem 2, which
we now denote by Hχ0 : T ∗G → R, depends smoothly on the
parameter χ0 ∈ V ∗. In addition, let S = G × V be the semidi-
rect product between G and V , and suppose that the Hamiltonian
function H : T ∗S → R, defined by H(q, p, v, χ) = Hχ(q, p), is
left-invariant under the action of S. Denote the restriction of H
to s∗ by h = H|s∗ .

Let Φt be the flow of (24)–(25), and let (μ(t), χ(t)) =
Φt(T ∗

e Lq0 (p(0)), ρ∗(q0)χ0). Define the matrices F, L ∈ Rn×n ,
N, P ∈ Rn×l , R ∈ Rl×n , and S ∈ Rl×l by

Fi
j = − ∂

∂μj

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

Li
j = − ∂

∂μj

l∑

r=1

l∑

s=1

χr [ρ′(Xi)]
r
s

δh

δχs

Ni
j = − ∂

∂χj

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

Pi
j = − ∂

∂χj

l∑

r=1

l∑

s=1

χr [ρ′(Xi)]
r
s

δh

δχs
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Ri
j =

∂

∂μj

l∑

r=1

χr [ρ′(δh/δμ)]r i

Si
j =

∂

∂χj

l∑

r=1

χr [ρ′(δh/δμ)]r i .

Solve the (linear, time-varying) matrix differential equations

Ṁ = (F + L)M + (N + P)K (29)

K̇ = RM + SK (30)

with initial conditions M(0) = I and K(0) = 0. Then
[
M(t)
K(t)

]
=
(
∇μ0 Φt(μ0 , ρ

∗(q0)χ0)
)∣∣∣∣

μ0 =T ∗
e Lq 0 (p(0))

. (31)

Proof: See Appendix A. �
The matrices M(t) and K(t) are the gradients of the re-

duced variables μ(t) and χ(t) with respect to the initial con-
dition μ(0) = T ∗

e Lq0 (p(0)). In other words, if a ∈ Rn is the
coordinate representation of T ∗

e Lq0 (p(0)) so that
∑n

i=1 aiX
i =

T ∗
e Lq0 (p(0)), then Mi

j (t) is the gradient of μi(t) with respect
to aj . Similarly, Ki

j (t) is the gradient of χi(t) with respect to
aj . Using Lemma 1, we can now compute the gradients of the
state trajectory.

Lemma 2 Suppose (q, p): [0, tf ] → T ∗M is a normal ex-
tremal of (1), and assume that the conditions in Lemma 1 hold.
Define the maps μ(t) and χ(t) as in Lemma 1, and define the
endpoint map φt : T ∗

q0
G → G as in Theorem 2 for the Hamilto-

nian vector field XHχ 0
. Next, define the matrices G, H ∈ Rn×n

and T ∈ Rn×l by

Gi
j =

∂

∂μj

δh

δμi
Hi

j = −
n∑

r=1

δh

δμr
Ci

rj Ti
j =

∂

∂χj

δh

δμi
.

Solve the (linear, time-varying) matrix differential equation

J̇ = GM + TK + HJ (32)

with initial condition J(0) = 0, where M and K solve the ma-
trix differential equations (29) and (30) in Lemma 1. Then
the jth column of J(t) gives the coordinate representation of
ηj (t) in (17) with respect to the basis {X1 , . . . , Xn} of the Lie
algebra g.

Proof: See Appendix B. �
Let a ∈ Rn again be the coordinate representation of

T ∗
e Lq0 (p(0)). The Lie algebra element ηj (t) is the gradient

of the state q(t) with respect to aj after left-translation to the
identity e ∈ G. The columns of the matrix J(t) are therefore
coordinate representations of the gradients of q(t) with respect
to a in terms of the Lie algebra basis {X1 , . . . , Xn}.

B. Reduction of Sufficient Conditions

We can now state the reduced sufficient conditions, which
establish a correspondence between times when the matrix J(t)
is singular and times when the endpoint map φt is degenerate.

Theorem 6 (Semidirect Product Reduction of Sufficient
Conditions) Suppose (q,p): [0, tf ] → T ∗M is a normal ex-
tremal of (1), and assume the conditions in Lemma 1 hold. Solve

the matrix differential equations in Lemmas 1 and 2 to find the
matrix function J : [0, tf ] → Rn×n . Define u : [0, tf ] → U as
in Theorem 2. Then (q, u) is a local optimum if there exists no
t ∈ (0, tf ] for which det(J(t)) = 0.

Proof: See Appendix C. �
We conclude that non-degeneracy of the endpoint map φt ,

and therefore local optimality, can be established by solving the
matrix differential equations (29), (30), and (32). We began in
Section V with the goal of exploring the connections in Fig. 1 de-
noted by the dashed lines. For systems with subgroup symmetry,
Theorem 6 establishes these connections.

C. Comparison of the Necessary and
Sufficient Conditions

Recall from Section VI-C that we could solve for the reduced
variables μ and χ and the state q in two ways. First, we could
solve the differential equations (24) and (25), which are decou-
pled from q, to find μ and χ. Then, using (23), we could solve
for q. Analogously, in the reduced sufficient conditions, we can
first solve the matrix differential equations (29) and (30), which
are decoupled from J, to find M and K. Then, using (32), we
can solve for J.

Alternatively, we could use the solution of (25), given by
(28), to eliminate the variable χ in (24). However, this couples
the reduced costate μ and the state q. The same is possible
for the sufficient conditions. To see this, let a again be the
coordinate representation of μ0 = T ∗

e Lq0 (p(0)), and recall from
Theorem 2 that φt is the endpoint map sending p(0) ∈ T ∗

q0
G

to φt(p(0)) = q(t). Using the definition of J, the gradient of
ρ(φt(p(0))) with respect to aj is

∂

∂aj
ρ(φt(p(0))) = ρ(q(t))

(
n∑

s=1

ρ′(Xs)Js
j (t)

)
.

Therefore, using the solution χ(t) = χ0ρ(q(t)) given in (28),
we can write the gradient of χ(t) with respect to aj as

∂

∂aj
χ(t) = χ0

(
∂

∂aj
ρ(φt(p(0)))

)

= χ0ρ(q(t))

(
n∑

s=1

ρ′(Xs)Js
j (t)

)

=
n∑

s=1

(ρ′(Xs))
∗
χ(t)Js

j (t),

where we have used the notation ∂χ/∂aj to denote the gradient
of the χ component of the flow of (24)–(25) with respect to aj .
Writing this expression in coordinates of χ gives

∂

∂aj
χi(t) =

l∑

r=1

n∑

s=1

χr (t)[ρ′(Xs)]
r
iJ

s
j (t).

In Lemma 3, we show that the above expression can be used to
construct the solution of the differential equation (30).

Lemma 3: Define the matrix K ∈ Rl×n by

Ki
j =

l∑

r=1

n∑

s=1

χr [ρ′(Xs)]
r
iJ

s
j . (33)
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TABLE I
COMPUTATIONS AND COUPLING IN NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONTROL PROBLEMS WITH SYMMETRY

Symmetry Type Necessary Conditions Sufficient Conditions Coupling of Equations

No Symmetry
(working in local coordinates)

ṗ = −Hq

q̇ = Hp

Ṁ = −Hp q M − Hq q J
J̇ = Hp p M + Hq p J

p and q can be coupled.
M and J can be coupled.
Coefficient matrices in sufficient
conditions may depend upon p and q .

Left-Invariant μ̇ = ad∗
δ h / δ μ (μ)

q̇ = Xδ h / δ μ (q)
Ṁ = FM
J̇ = GM + HJ

μ is decoupled from q .
M is decoupled from J.
Coefficient matrices in sufficient
conditions only depend upon μ .

Subgroup Symmetry μ̇ = ad∗
δ h / δ μ (μ) −

(
ρ ′

δ h / δ χ

)∗
χ

χ̇ = ρ ′ (δh/δμ)∗ χ
q̇ = Xδ h / δ μ (q)
or
μ̇ = ad∗

δ h / δ μ (μ) −
(

ρ ′
δ h / δ χ

)∗
χ

χ(t) = ρ(q(t))∗χ0
q̇ = Xδ h / δ μ (q)

Ṁ = (F + L)M + (N + P)K
K̇ = RM + SK
J̇ = GM + TK + HJ
or
Ṁ = (F + L)M + (N + P)K
K = UJ
J̇ = GM + TK + HJ

μ and χ are decoupled from q .
M and K are decoupled from J.
Coefficient matrices in sufficient
conditions only depend upon μ and χ .

χ is a function of q , which couples μ and q .
K is a function of J, which couples M and J.
Coefficient matrices in sufficient
conditions only depend upon μ and χ .

Then K solves the matrix differential equation (30) with the
initial condition K(0) = 0.

Proof: See Appendix D. �
We can now use the solution for K in the matrix differential

equations (29) and (32). This gives an alternative system of
matrix differential equations that can be solved to find the matrix
J, as shown in Theorem 7.

Theorem 7 (Alternative Test for Conjugate Points) Suppose
(q, p) : [0, tf ] → T ∗M is a normal extremal of (1), and assume
the conditions in Theorem 6 hold. Define the matrix U ∈
Rl×n by

Ui
j =

l∑

r=1

χr [ρ′(Xj )]
r
i .

Solve the (linear, time-varying) matrix differential equations

Ṁ = (F + L)M + (N + P)UJ

J̇ = GM + (TU + H)J
(34)

with the initial conditions M(0) = I and J(0) = 0. Define u :
[0, tf ] → U as in Theorem 2. Then (q, u) is a local optimum if
there exists no t ∈ (0, tf ] for which det(J(t)) = 0.

Proof: From Lemma 3, we have K = UJ. The differential
equations (34) are obtained by directly substituting this expres-
sion for K into the differential equations (29) and (32). �

Just as we were able to eliminate the reduced variable χ in
the differential equation (24) in the necessary conditions, we
can eliminate the matrix K in the matrix differential equations
(29) and (32) in the sufficient conditions. In the necessary con-
ditions, the elimination of χ results in a coupling between the
reduced costate μ and the state q. In the sufficient conditions,
the elimination of K results in a coupling between the matrices
M and J.

Table I summarizes the computations and the coupling be-
tween equations in the necessary and sufficient conditions for
optimal control problems without symmetry, left-invariant prob-
lems, and problems with subgroup symmetry. For systems with
subgroup symmetry, we see that the variables μ, χ, and q play
analogous roles in the necessary conditions as the matrices M,
K, and J in the sufficient conditions, respectively. Applying

symmetry reduction provides similar simplifications in both the
necessary and sufficient conditions.

VIII. CONJUGATE POINTS IN THE HEAVY TOP

In this section, we return to the optimal control problem
(12) with the augmented cost function (18), which models a
spinning top in a gravitational field. We first apply the results
in Theorem 5 to obtain necessary conditions for optimality in
Section VIII-A. In Section VIII-B, we apply the reduced suf-
ficient conditions in Theorems 6 and 7, which give two equiv-
alent ways of establishing local optimality. In Section VIII-C,
we compute conjugate points in the axisymmetric sleeping top
and determine which of these trajectories are locally optimal
solutions of the optimal control problem.

A. Necessary Conditions for the Heavy Top

Recall that the Hamiltonian function Hχ0 for the heavy spin-
ning top is given by (19). Extending Hχ0 to be a function on
T ∗G × V × V ∗ = T ∗SO(3) × R3 × R3∗ gives

H(q, p, v, χ) =
1
2

3∑

i=1

c−1
i 〈p, qXi〉2 − χ(qν).

For any v ∈ V , χ ∈ V ∗, p ∈ T ∗
q SO(3), and g, q, r ∈ SO(3)

satisfying q = gr, we have

H(r, T ∗
r Lg (p), v, ρ∗(g)χ)

=
1
2

3∑

i=1

c−1
i 〈T ∗

r Lg (p), g−1qXi〉2 − ρ∗(g)χ(g−1qν)

=
1
2

3∑

i=1

c−1
i 〈p, gg−1qXi〉2 − χ(gg−1qν)

=
1
2

3∑

i=1

c−1
i 〈p, qXi〉2 − χ(qν)

= H(q, p, v, χ).

(35)

Therefore H is left-invariant under the action of S. This implies
that Hχ0 is left-invariant under the action of Gχ0 , which sim-
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ply means that Hχ0 is left-invariant under rotations around the
gravity vector. As a consequence, we can apply Theorem 5. The
reduced Hamiltonian on s∗ is given by

h(μ, χ) = H(e, μ, v, χ) =
1
2

3∑

i=1

c−1
i μ2

i − χiν
i.

The necessary conditions in Theorem 5 give that μ and χ satisfy
(24) and (25), which are equivalent to

μ̇ = μ × u + χ × ν χ̇ = χ × u, (36)

where ui = c−1
i μi . The solution for χ, given by (28), is χ(t) =

χ0q(t). We see that χ(t) gives the direction of the gravity vector
rotated into the local coordinate frame at q(t).

B. Sufficient Conditions for Optimality

We now apply the sufficient conditions in Theorem 6. Com-
puting the matrices F, L, N, P, R, and S from Lemma 1, we
see that F is identical to (16), L and N are both zero matrices,
S is identical to H in (16), and

P = −ν̂ R =

⎡

⎢⎣
0 −χ3/c2 χ2/c3

χ3/c1 0 −χ1/c3

−χ2/c1 χ1/c2 0

⎤

⎥⎦ .

Computing the matrices in Lemma 2, we see that G and H
are identical to (16), and T = 0. Therefore, to find the matrix
J and establish non-degeneracy of the endpoint map φt , we
must solve the matrix differential equations (29), (30), and (32)
with the initial conditions M(0) = I , K(0) = 0, and J(0) = 0.
Alternatively, we can apply Theorem 7 and solve the matrix
differential equations (34). Computing the matrix U in Lemma
7 gives U = χ̂. For a given solution of (36), these matrix dif-
ferential equations can be solved to determine if the solution is
a local optimum of the optimal control problem.

C. The Axisymmetric Sleeping Top

We now consider a sleeping axisymmetric top in a gravita-
tional field with the parameters in the cost function (18) sat-
isfying c2 = c3 = 1 and v = [1 0 0]T . The top is said to be
sleeping when its axis of symmetry is aligned with the direc-
tion of gravity, and the top is rotating about this axis. These
trajectories correspond to the fixed points of the system (36)
given by μ2 = μ3 = χ2 = χ3 = 0, where μ1 and χ1 are arbi-
trary. At these fixed points, the matrix differential equations (34)
are linear time-invariant equations.

After solving the linear time-invariant system (34) at these
fixed points, we can compute det(J(t)). If χ1 − μ2

1/4 > 0, then
det(J(t)) simplifies to

det(J(t)) =
t

c1

(
χ1 − μ2

1
4

) sinh2

(
t

√
χ1 − μ2

1

4

)
.

If the term χ1 − μ2
1/4 < 0, then det(J(t)) simplifies to

det(J(t)) =
t

c1

(
μ2

1
4 − χ1

) sin2

(
t

√
μ2

1

4
− χ1

)
.

Fig. 2. Regions of optimal and non-optimal fixed points in the μ1 - χ1
plane corresponding to trajectories of the sleeping top.

If χ1 − μ2
1/4 = 0, then det(J(t)) simplifies to

det(J(t)) =
t3

c1
.

We see that if χ1 ≥ μ2
1/4, then det(J(t)) > 0 for all t > 0.

Therefore, the sleeping top with χ1 ≥ μ2
1/4 is a local optimum

of the optimal control problem for arbitrarily large final times
tf . If χ1 < μ2

1/4, then the first conjugate point occurs at

t = π

(
μ2

1

4
− χ1

)−1/2

. (37)

We conclude that the sleeping top with χ1 < μ2
1/4 is a local

optimum if the final time tf satisfies

tf < π

(
μ2

1

4
− χ1

)−1/2

.

These expressions for conjugate points in the heavy sleeping top
have not appeared in previous work, and our ability to derive
them relies on the results we proved in Section VII.

We end by discussing an interesting link between conjugate
points and dynamic stability of the sleeping top. The boundary
between locally optimal and non-optimal fixed points in the
μ1–χ1 plane is given by (37) with t = tf . Rearranging this
expression gives

χ1 =
μ2

1

4
− π2

t2f
.

This boundary between locally optimal and non-optimal fixed
points is shown in Fig. 2 in the μ1 - χ1 plane. As tf increases,
the boundary between locally optimal and non-optimal fixed
points approaches χ1 = μ2

1/4, which is also shown in Fig. 2.
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In particular, χ1 = μ2
1/4 is the boundary in the μ1 - χ1 plane

between fixed points that are locally optimal for arbitrarily large
tf > 0 and fixed points that lose optimality for some finite tf .
For a given tf > 0, these boundaries allow us to partition the
μ1 - χ1 plane into three regions. The red region in Fig. 2 cor-
responds to trajectories of the sleeping top that have conjugate
points before tf , and are therefore non-optimal. The blue region
corresponds to trajectories that have conjugate points after tf ,
and are therefore locally optimal. The green region corresponds
to locally optimal trajectories that have no conjugate points for
all time.

The curve χ1 = μ2
1/4 is also the boundary between dynam-

ically stable and unstable trajectories of the sleeping top, as
denoted in Fig. 2 [40]. This result agrees with the kinetic in-
stability theorem of Kelvin and Tait [41], which states that a
trajectory of a conservative system without conjugate points for
arbitrarily large tf is unstable [42].

IX. CONCLUSION

We have applied Lie-Poisson reduction by stages to geo-
metric optimal control problems on Lie groups with subgroup
symmetry. After providing reduced necessary conditions for op-
timality, we derived reduced sufficient conditions for optimality
based on the non-existence of conjugate points. Whereas the
general necessary and sufficient conditions in Section III were
coordinate-free conditions, the reduced necessary and sufficient
conditions were stated in terms of coordinate formulas and rely
on solutions of ordinary differential equations, and evaluating
these coordinate formulas did not depend upon local coordi-
nates on the Lie group. These results were then applied to a
geometric optimal control problem that models the motion of a
spinning top in a gravitational field. Using Theorems 5, 6, and 7,
we derived new results on conjugate points in the axisymmetric
sleeping top.

The results in this paper suggest that by exploiting symme-
tries, sufficient conditions for optimality can be simplified in
an analogous way to necessary conditions. This was shown by
comparing the computations needed to evaluate the reduced nec-
essary and sufficient conditions. In particular, the two alternative
ways of evaluating the necessary conditions for problems with
subgroup symmetry lead to two analogous ways of evaluating
the sufficient conditions, as shown in Table I. A deeper under-
standing of this connection could be obtained by comparing the
quotient spaces on which the reduced necessary and sufficient
conditions evolve, rather than comparing coordinate formulas.
For the left-invariant problems considered in Section IV, the
unreduced necessary conditions evolve on T ∗G, while the re-
duced necessary conditions evolve on a quotient space that is
diffeomorphic to g∗. Future work could analyze the correspond-
ing quotient spaces on which the reduced sufficient conditions
evolve.

Other extensions include the consideration of more general
approaches to symmetry group reduction. In this paper, we fo-
cused on the case when the state of the optimal control problem
evolves on a Lie group and the symmetry group of the system is
the isotropy group of a parameter. However, reduction by stages,

and more generally symmetry group reduction, can be applied
to systems with less structure, i.e., where the state takes values
on a smooth manifold [3]. Exploring the connection between
reduction of the necessary and sufficient conditions for optimal-
ity in more general optimal control problems is an interesting
direction for future work.

APPENDIX A
PROOF OF LEMMA 1

We use the notation ∂μi/∂aj and ∂χi/∂aj to denote the
μi and χi components, respectively, of the gradient of the
flow of (24)–(25), i.e., the right side of the expression (31).
Defining Mi

j = ∂μi/∂aj and Ki
j = ∂χi/∂aj and using (26),

we find

d

dt
Mi

j =
∂μ̇i

∂aj

= − ∂

∂aj

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

− ∂

∂aj

l∑

r=1

l∑

s=1

χr [ρ′(Xi)]
r
s

δh

δχs

=
n∑

k=1

(
− ∂

∂μk

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

)
∂μk

∂aj

+
l∑

k=1

(
− ∂

∂χk

n∑

r=1

n∑

s=1

Cs
ir

δh

δμr
μs

)
∂χk

∂aj

+
n∑

k=1

(
− ∂

∂μk

l∑

r=1

l∑

s=1

χr [ρ′(Xi)]
r
s

δh

δχs

)
∂μk

∂aj

+
l∑

k=1

(
− ∂

∂χk

l∑

r=1

l∑

s=1

χr [ρ′(Xi)]
r
s

δh

δχs

)
∂χk

∂aj

=
n∑

k=1

(
Fi

k + Li
k

)
Mk

j +
l∑

k=1

(
Ni

k + Pi
k

)
Kk

j .

It is clear that Mi
j (0) = δi

j , so we have verified (29). A similar
calculation, using (27), shows that (30) holds.

APPENDIX B
PROOF OF LEMMA 2

We need the following lemmas before proving Lemma 2.
Lemma 4: Let q : W → G be a smooth map, where W ⊂ R2

is simply connected. Denote its partial derivatives ζ : W → g
and η : W → g by

ζ(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂t

)

η(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂ε

)
.

(38)
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Then

∂ζ

∂ε
− ∂η

∂t
= [ζ, η]. (39)

Conversely, if there exist smooth maps ζ and η satisfying (39),
then there exists a smooth map q satisfying (38).

Proof: See Proposition 5.1 in [43]. �
Lemma 5: Let α, β, γ ∈ g and suppose γ = [α, β]. Then

γk =
n∑

r=1

n∑

s=1

αrβsCk
rs .

Proof: See Lemma 2 in [4]. �
We can now prove Lemma 2. For j ∈ {1, . . . , n}, define

ηj (t) ∈ g as in (17). Also let ζ(t) ∈ g be

ζ(t) = Tq(t)Lq(t)−1 (q̇(t)) =
δh

δμ
,

where the second equality follows from (23) in Theorem 5. From
Lemma 4, we have

η̇j =
∂ζ

∂aj
− [ζ, ηj ] =

∂

∂aj

δh

δμ
−
[
δh

δμ
, ηj

]
.

After defining Ji
j (t) = ηi

j (t), so that the jth column of J is the
coordinate representation of ηj (t), the previous equation can be
written in coordinates using Lemma 5:

J̇i
j = η̇i

j

=
n∑

k=1

(
∂

∂μk

δh

δμi

)
∂μk

∂aj
+

l∑

k=1

(
∂

∂χk

δh

δμi

)
∂χk

∂aj

+
n∑

k=1

(
−

n∑

r=1

δh

δμr
Ci

rk

)
ηk

j

=
n∑

k=1

Gi
kMk

j +
l∑

k=1

Ti
kKk

j +
n∑

k=1

Hi
kJk

j ,

(40)

where we used Mi
j = ∂μi/∂aj and Ki

j = ∂χi/∂aj from
Lemma 1. It is clear that Ji

j = 0, so we have verified (32).

APPENDIX C
PROOF OF THEOREM 6

Define the smooth map σ : Rn → T ∗
q0

G by

σ(a) = T ∗
q0

Lq−1
0

(
n∑

i=1

aiPi

)
.

This expression also defines σ : Rn → Tp0 (T
∗
q0

G) if we iden-
tify T ∗

q0
G with Tp0 (T

∗
q0

G) in the usual way. Given p0 = σ(a)
for some a ∈ Rn , there exists non-zero λ ∈ Tp0 (T

∗
q0

G) satisfy-
ing Tp0 φt(λ) = 0 if and only if there exists non-zero s ∈ Rn

satisfying Tσ (a)φt(σ(s)) = 0. Now observe that

Tσ (a)φt(σ(s)) =
n∑

j=1

sj

(
Tσ (a)φt

(
T ∗

q0
Lq−1

0

(
Xj
)))

,

where, recall, {X1 , . . . , Xn} is a basis for g∗. By left translation,
Tσ (a)φt(σ(s)) = 0 if and only if

0 =
n∑

j=1

sjTq(t)Lq(t)−1

(
Tσ (a)φt

(
T ∗

q0
Lq−1

0

(
Xj
)))

. (41)

With ηj (t) ∈ g as defined in (17), the above expression is
equivalent to 0 =

∑n
j=1 sj ηj (t). From Lemma 2, J(t) sat-

isfies Ji
j (t) = ηi

j (t), i.e., the jth column of J(t) is the co-
ordinate representation of ηj (t) with respect to the basis
{X1 , . . . , Xn}. Then, (41) holds for some s �= 0 if and only
if det(J(t)) = 0. Therefore φt is degenerate at p0 if and
only if det(J(t)) = 0. The result follows by application of
Theorem 2.

APPENDIX D
PROOF OF LEMMA 3

Since J(0) = 0, it is clear that K(0) = 0. Taking the time
derivative of (33) gives

K̇i
j =

l∑

r=1

n∑

s=1

(
χ̇r [ρ′(Xs)]

r
iJ

s
j + χr [ρ′(Xs)]

r
i J̇

s
j

)
.

Using (27) and (40), we have

K̇i
j =

l∑

r=1

n∑

s=1

l∑

k=1

χk [ρ′ (δh/δμ)]k r [ρ
′(Xs)]

r
iJ

s
j

+
l∑

r=1

n∑

s=1

n∑

k=1

χr [ρ′(Xs)]
r
i

(
∂

∂μk

δh

δμs

)
Mk

j

+
l∑

r=1

n∑

s=1

l∑

k=1

χr [ρ′(Xs)]
r
i

(
∂

∂χk

δh

δμs

)
Kk

j

−
l∑

r=1

n∑

s=1

n∑

k=1

χr [ρ′(Xs)]
r
i

(
n∑

p=1

δh

δμp
Cs

pk

)
Jk

j .

(42)

We will analyze each row in the above expression individually.
The second row of (42) is equivalent to

l∑

r=1

n∑

s=1

n∑

k=1

χr [ρ′(Xs)]
r
i

(
∂

∂μk

δh

δμs

)
Mk

j

=
n∑

k=1

(
∂

∂μk

l∑

r=1

χr

(
n∑

s=1

[ρ′(Xs)]
r
i

δh

δμs

))
Mk

j

=
n∑

k=1

(
∂

∂μk

l∑

r=1

χr [ρ′(δh/δμ)]r i

)
Mk

j

=
n∑

k=1

Ri
kMk

j .
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Next, consider the third row of (42):

l∑

r=1

n∑

s=1

l∑

k=1

χr [ρ′(Xs)]
r
i

(
∂

∂χk

δh

δμs

)
Kk

j

=
l∑

k=1

(
l∑

r=1

χr
∂

∂χk

(
n∑

s=1

[ρ′(Xs)]
r
i

δh

δμs

))
Kk

j

=
l∑

k=1

(
l∑

r=1

χr
∂

∂χk
[ρ′(δh/δμ)]r i

)
Kk

j .

Now consider the fourth row of (42). Using the definition of the
structure constants in (7), we have

l∑

r=1

n∑

s=1

n∑

k=1

χr [ρ′(Xs)]
r
i

(
n∑

p=1

δh

δμp
Cs

pk

)
Jk

j

=
n∑

k=1

l∑

r=1

n∑

p=1

χr
δh

δμp

(
n∑

s=1

Cs
pk [ρ′(Xs)]

r
i

)
Jk

j

=
n∑

k=1

l∑

r=1

n∑

p=1

χr
δh

δμp
[ρ′([Xp,Xk ])]r i [J]k j .

By the definition of the Lie bracket, we have

ρ′([Xp,Xk ]) = ρ′(Xp)ρ′(Xk ) − ρ′(Xk )ρ′(Xp)

and

[ρ′([Xp,Xk ])]r i

=
l∑

s=1

[ρ′(Xp)]
r
s [ρ

′(Xk )]s i − [ρ′(Xk )]r s [ρ
′(Xp)]

s
i .

We now have that the fourth row of (42) is equivalent to

n∑

k=1

l∑

r=1

n∑

p=1

l∑

s=1

χr
δh

δμp
[ρ′(Xp)]

r
s [ρ

′(Xk )]s iJ
k

j

−
n∑

k=1

l∑

r=1

n∑

p=1

l∑

s=1

χr
δh

δμp
[ρ′(Xk )]r s [ρ

′(Xp)]
s
iJ

k
j

=
n∑

k=1

l∑

r=1

l∑

s=1

χr [ρ′(δh/δμ)]r s [ρ
′(Xk )]s iJ

k
j

−
n∑

k=1

l∑

r=1

l∑

s=1

χr [ρ′(δh/δμ)]s i [ρ
′(Xk )]r sJ

k
j .

Since the fourth line in (42) begins with a minus sign, we see
that the first term in the above expression cancels with the first
line in (42). We are left with

n∑

k=1

l∑

r=1

l∑

s=1

χr [ρ′(δh/δμ)]s i [ρ
′(Xk )]r sJ

k
j

=
l∑

s=1

[ρ′(δh/δμ)]s i

(
l∑

r=1

n∑

k=1

χr [ρ′(Xk )]r sJ
k

j

)
.

Using (33), this expression is equivalent to

l∑

s=1

[ρ′(δh/δμ)]s iK
s
j .

Combining these calculations, we have that

K̇i
j =

n∑

k=1

Ri
kMk

j +
l∑

k=1

[ρ′(δh/δμ)]k iK
k

j

+
l∑

k=1

(
l∑

r=1

χr
∂

∂χk
[ρ′(δh/δμ)]r i

)
Kk

j

=
n∑

k=1

Ri
kMk

j +
l∑

k=1

∂

∂χk

(
l∑

r=1

χr [ρ′(δh/δμ)]r i

)
Kk

j

=
n∑

k=1

Ri
kMk

j +
n∑

k=1

Si
kKk

j .

We conclude that K solves the differential equation (30).
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vol. 3, no. 3, pp. 833–867, 2003.

[40] D. Lewis, T. Ratiu, J. C. Simo, and J. E. Marsden, “The heavy top: A
geometric treatment,” Nonlinearity, vol. 5, no. 1, pp. 1–48, 1992.

[41] W. Thomson and P. G. Tait, Treatise on Natural Philosophy: Part 1.
Cambridge, U.K.: Cambridge University Press, 1912.

[42] J. G. Papastavridis, “On a Lagrangean action based kinetic instability
theorem of Kelvin and Tait,” Int. J. Eng. Sci., vol. 24, no. 1, pp. 1–17,
1986.

[43] A. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. S. Ratiu, “The
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