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SUFFICIENT CONDITIONS FOR A PATH-CONNECTED SET OF
LOCAL SOLUTIONS TO AN OPTIMAL CONTROL PROBLEM∗
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Abstract. Consider a fixed-endpoint, fixed time optimal control problem with state and input
taking values in Euclidean space. We show that if the Hamiltonian function associated with this
problem satisfies a scale invariance property, then the set of all local solutions to this problem—over
all possible terminal state constraints—is path-connected. We also show that this result extends to
problems with additional constraints such as a bound on total cost. Finally, we use this result to
show that the set of all curves that can be realized by a planar elastica is path-connected, and we
describe how this result can be applied to the problem of robotic manipulation for nonrigid objects.
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1. Introduction. Consider an optimal control problem with state q(t) ∈ R on
the fixed time interval t ∈ [0, T ] with q(0) = 0. Suppose the upper curve in Figure
1 is a local solution of this optimal control problem for the terminal state constraint
q(T ) = 1, and the lower curve is a local solution for the terminal state constraint
q(T ) = −1. In this paper, we ask whether it is possible to continuously deform
the upper curve into the lower curve in such a way that each trajectory along the
deformation is a local solution of the optimal control problem for some choice of q(T ).
(One possible continuous deformation is shown in Figure 1 by the dashed curves.)
In other words, we ask whether the set of all local solutions of the optimal control
problem over all possible choices of the terminal state constraint is path-connected.

Our main contribution in this paper is a sufficient condition for the set described
above to be path-connected. This result relies on the assumption that the Hamilto-
nian function associated with the optimal control problem satisfies a scale invariance
property. When this scale invariance property is satisfied, the necessary and sufficient
conditions for optimality are scale-invariant with respect to time. This allows us to
construct a path in the set of local solutions of the optimal control problem connecting
two given solutions. This path corresponds to a continuous deformation of one given
solution into the other, such as the deformation shown in Figure 1.

After establishing conditions for the set of all local solutions to be path-connected,
we ask whether this set remains path-connected if we place additional constraints on
the solutions of the optimal control problem. The constraints we consider include
bounds on the state and the costate of the optimal control problem. We also pay
particular attention to the constraint that the total cost must be less than a given
bound.

We then consider an optimal control problem whose local solutions are stable
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1 Solution for q(T ) = 1

Solution for q(T ) = −1

Fig. 1. Two local solutions of an optimal control problem, one having the terminal state con-
straint q(T ) = 1, and the other having the terminal state constraint q(T ) = −1. In this paper, we ask
whether either of these trajectories can be continuously deformed into the other trajectory, all the
while remaining a local solution of the optimal control problem for some terminal state constraint.
The dashed curves show a few trajectories along such a continuous deformation.

equilibrium configurations of a planar elastica, i.e., a planar curve with given endpoints
and slopes at the endpoints that minimizes curvature. Using the results in this paper,
we show that the set of all such curves over all possible terminal state constraints is
path-connected. Finally, we describe how this result can be applied to the problem
of robotic manipulation for a canonical type of deformable object.

The motivating application and related work are discussed in section 2. In section
3, we review necessary and sufficient conditions for optimal control problems. In
section 4, we describe optimal control problems with path-connected sets of local
solutions, and we consider five example problems that have topologically distinct sets
of local solutions. In section 5, we state our main result which is a sufficient condition
for the set of all local solutions to be path-connected. In section 6, we consider the set
of all local solutions that satisfy additional constraints. In section 7, we apply these
results to an optimal control problem whose local solutions are stable equilibrium
configurations of a planar elastica. Concluding remarks are given in section 8.

The results in this paper both generalize and extend our previous work, presented
at a conference, in which we showed that the free configuration space of a Kirchhoff
elastic rod is path-connected [6]. Here, we consider a much wider class of optimal
control problems, and we state conditions for the set of all local solutions to be path-
connected in terms of the Hamiltonian function rather than the differential equations
that govern the associated Hamiltonian system.

2. The motivating application and related work. In this section, we discuss
the motivation for this paper and the previous literature related to our results. The
main application, which is robotic manipulation of nonrigid objects, is discussed in
section 2.1. Previous work is discussed in section 2.2.

2.1. The motivating application. The main application that motivates this
work is robotic manipulation of thin deformable objects such as an elastic wire, cable,
or rod [7, 12, 14, 16, 17, 26]. When manipulating an elastic rod, the objective is to
find a path of the robotic grippers holding the ends of the rod that causes the rod
to move from an initial shape to a goal shape. Two types of models can be used to
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978 ANDY BORUM AND TIMOTHY BRETL

predict the rod’s response to a change in gripper placement. First, a time-dependent
dynamic model of the rod can be used. Such a model would capture vibrations and
other dynamic phenomena that develop as the rod is manipulated. Alternatively, a
time-independent quasi-static model can be used. This model assumes that the rod is
being manipulated slowly enough so that dynamic effects are negligible, and at each
point in time, the rod is in static equilibrium.

In this paper, we use a quasi-static model of the elastic rod. Under this quasi-
static assumption, for given placements of the robotic grippers, the shape of the rod
locally minimizes elastic potential energy. Therefore, the shape of the rod is a local
solution of an optimal control problem whose total cost is the elastic potential energy
stored in the rod. Quasi-statically deforming the rod using the robotic grippers is
equivalent to planning a path of the rod through the set of all local solutions of this
optimal control problem over all possible choices of the endpoint constraints. This set
can be thought of as the feasible configuration space of the rod.

It is important to note that when using a quasi-static model of the elastic rod,
an optimal control problem is solved to find stable equilibrium shapes of the rod.
Optimal control is not used to find optimal paths of the robotic grippers holding the
ends of the rod. This approach to manipulation has been applied to both planar
[16] and spatially deformed rods [7]. As we will see in section 7, the results in this
paper allow us to show that the feasible configuration space of the planar rod is path-
connected. Furthermore, we are able to construct paths in this configuration space
connecting any two shapes of the elastic rod. These paths in the feasible configuration
space provide us with paths of the robotic grippers that cause the rod to move to the
desired shape.

2.2. Related work. The sets that we consider in this paper (i.e., sets of all
local solutions of an optimal control problem) have been previously analyzed for a
few specific optimal control systems and calculus of variations problems. Bretl and
McCarthy analyzed an optimal control problem whose local solutions are stable equi-
librium configurations of a Kirchhoff elastic rod [7]. They showed that the set of all
local solutions of this optimal control problem over all terminal state constraints is a
subset of a smooth six-dimensional manifold. The same was done for a planar elastica
by Matthews and Bretl [16]. The authors of this paper showed in [6] that this subset is
path-connected for the Kirchhoff elastic rod. Neukirch and Henderson considered the
related problem of characterizing the set of extremals of the Kirchhoff elastic rod [19]
and used numerical continuation to compute the set [11]. Ivey and Singer considered
the set of Kirchhoff elastic rods that have quasi-periodic centerlines and showed that
this set is parameterized by a two-dimensional disc [13].

On a sub-Riemannian manifold, the set of all extremals (not necessarily local
optima) originating from a point on the manifold corresponds to the preimage of the
exponential map on the sub-Riemannian manifold. This set has been analyzed for a
variety of problems [3, 8, 18, 22, 23, 24, 25]. Of these papers, Sachkov and Sachkova’s
characterization of the exponential map for a planar elastica is the one most related to
our work [25]. After decomposing the preimage of the exponential map into subsets,
Sachkov showed that some of these subsets are path-connected. However, it was not
established that the set of all local optima is path-connected. Finally, we note that
for linear quadratic optimal control problems, the set of all local optima is always
path-connected [2]. We will discuss this in more detail in section 4 after exploring
some examples.

When using continuation and homotopy methods to solve an optimal control
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problem, one is often interested in showing that the set of all solutions of the problem
over all choices of the continuation parameter is path-connected [5, 9, 29]. When ap-
plying continuation methods to systems of algebraic equations, Smale gave conditions
that guarantee the existence of a continuous path connecting the solutions as the con-
tinuation parameter changes [27]. However, in the case of optimal control systems,
such conditions have been difficult to find [9]. When using a continuation method to
find geodesics on a Riemannian manifold, Bonnard, Shcherbakova, and Sugny gave
a sufficient condition for the existence of a continuous deformation connecting the
geodesics as the continuation parameter changes [5]. This condition requires the time
interval of the optimal control problem to be shorter than the injectivity radius, where
the injectivity radius is the minimum time at which trajectories cease to be optimal
[10].

To prove our main result in section 5, we rely on a symmetry property of differen-
tial equations known as scale invariance. This invariance property can be formulated
as a one-dimensional Lie group symmetry [20, 28], and this property can be used to re-
duce the dimension of a system of differential equations by one [4]. We are particularly
interested in applying this scale invariance property to the Hamiltonian system that
results from applying Pontryagin’s maximum principle to an optimal control problem
[21]. In previous work, scale invariance was used by Ardentov to bound conjugate
times for a sub-Riemannian problem on the Engel group [3]. The scale invariance
property of a planar elastica that we consider in section 7 is mentioned briefly in [22]
and [25], but the implications of this property were not analyzed.

3. Necessary and sufficient conditions for optimal control problems. In
this section, we state necessary and sufficient conditions for a trajectory to be a lo-
cal solution of an optimal control problem. The Pontryagin maximum principle [21],
which associates a Hamiltonian system to the optimal control problem, provides nec-
essary conditions for optimality and is stated in section 3.1. The sufficient conditions
for optimality in section 3.2 are based on the theory of conjugate points in optimal
control problems [1]. These necessary and sufficient optimality conditions provide a
set of ordinary differential equations that must be satisfied by local optima of the
optimal control problem. In section 5, we will describe a scaling property that is
sometimes satisfied by these differential equations, and we will show that this prop-
erty can be completely characterized by the Hamiltonian function defined in section
3.1.

3.1. Necessary conditions for optimality. Let U = R
m for some m > 0, and

let f : Rn × U → R
n and g : Rn × U → R be smooth functions for some n > 0. Fix

T > 0, and consider the optimal control problem

(3.1)

minimize
q,u

C(q, u) =

∫ T

0

g(q(t), u(t)) dt

subject to q̇(t) = f(q(t), u(t)),

q(0) = 0, q(T ) = b

for some b ∈ R
n, where (q, u) : [0, T ] → R

n×U . Necessary conditions for a trajectory
(q, u) to be a local optimum of (3.1) are provided by Pontryagin’s maximum principle
[21]. To apply the maximum principle, we define the parameterized Hamiltonian

function Ĥ : Rn × R
n × R× U → R by

(3.2) Ĥ(p, q, k, u) = pT f(q, u)− kg(q, u),
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980 ANDY BORUM AND TIMOTHY BRETL

where p ∈ R
n is called the costate.

Theorem 3.1 (necessary conditions for optimality). Suppose (q∗, u∗) : [0, T ] →
R

n × U is a local optimum of (3.1). Then, there exists k ≥ 0 and a solution
(p, q) : [0, T ] → R

n × R
n of the time-varying Hamiltonian system

(3.3)
dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

where H : Rn × R
n × R → R is given by H(p, q, t) = Ĥ(p, q, k, u∗(t)), that satisfies

q(t) = q∗(t) and

(3.4) H(p(t), q(t), t) = max
u∈U

Ĥ(p(t), q(t), k, u)

for all t ∈ [0, T ]. If k = 0, then p(t) �= 0 for all t ∈ [0, T ].

Proof. See Theorem 12.10 of Agrachev and Sachkov [1].

We call the solution (p, q) in Theorem 3.1 an abnormal extremal when k = 0 and
a normal extremal otherwise. When k �= 0, we may assume that k = 1. We call (q, u)
abnormal if it is the projection of an abnormal extremal. We call (q, u) normal if it
is the projection of a normal extremal and is not abnormal.

3.2. Sufficient conditions for optimality. Let π : Rn × R
n → R

n denote the
projection map π(p, q) = q. The following assumptions (A1)–(A3) are needed in order
to apply the sufficient conditions in Theorem 3.2. We will assume these conditions
hold throughout the paper.

Suppose (p, q) : [0, T ] → R
n × R

n is a normal extremal of (3.1). Define the
Hamiltonian function H by

(3.5) H(p, q) = max
u∈U

Ĥ(p, q, 1, u).

(A1) The Hamiltonian function H defined in (3.5) is smooth, and solutions of the
Hamiltonian system (3.3) with H given by (3.5) exist for all time t ∈ [0, T ].

(A2) There is no other solution (p′, q′) of (3.3) satisfying q(t) = q′(t) for all
t ∈ [0, T ].

(A3) The maximum in (3.5) exists and ∂2Ĥ/∂u2 < 0.
Assumptions (A1)–(A3) place some restrictions on the type of optimal control

problems we consider. In particular, the smoothness of the Hamiltonian function H
typically requires that there be no constraints on the control input u, and this is why
we have chosen the control set U = R

m. A wide class of optimal control problems
that satisfy these assumptions are problems with control-affine dynamic constraints
and cost functions that are quadratic in the control input. We will see in section 4.2
that even these systems, which satisfy assumptions (A1)–(A3), can have sets of local
optima with distinct topological properties.

Under condition (A1), solutions of (3.3) starting at q(0) = 0 are uniquely defined
on the interval [0, T ] by the choice of initial costate p(0) ∈ R

n, and the map from
p(0) to (p, q) is smooth and bijective. Denote this map by Γ, so that (p, q) = Γ(p(0)).
Also let A ⊂ R

n denote the set of all initial costates p(0) ∈ R
n that map to normal

extremals of (3.1), i.e.,

(3.6) A = {a ∈ R
n : (p, q) = Γ(a) is a normal extremal of (3.1)} .
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When (A2) holds, each a ∈ A is mapped smoothly to a unique q = π(p, q) = π(Γ(a)).
When (A1)–(A3) are all true, each a ∈ A is mapped bijectively to a normal (q, u),
and this map is smooth by assumption (A3) (due to the implicit function theorem).
Denote this smooth map by (q, u) = Ψ(a). Also define

(3.7) C = Ψ(A) ⊂ C∞([0, T ],Rn × U).

Note that for each a ∈ A, (q, u) = Ψ(a) satisfies Theorem 3.1 for some choice of
terminal state constraint b ∈ R

n. Therefore, C is the set of all normal (q, u) of (3.1)
over all possible choices of the terminal state constraint b ∈ R

n.
Theorem 3.2 provides a sufficient condition to test which normal (q, u) from The-

orem 3.1 are local optima of (3.1).

Theorem 3.2 (sufficient conditions for optimality). Suppose (p, q) : [0, T ] → R
n×

R
n is a normal extremal of (3.1). Define H ∈ C∞(Rn × R

n,R) as in (3.5), and de-
fine u : [0, T ] → U so that u(t) is the unique maximizer of (3.5) at (p(t), q(t)). Let
ϕ : R × R

n × R
n → R

n × R
n be the flow of (3.3), and define the endpoint map

φt : R
n → R

n by φt(a) = π ◦ ϕ(t, a, q(0)). Then (q, u) is a local optimum of (3.1) if
and only if there exists no t ∈ (0, T ] for which φt is degenerate at p(0).

Proof. See Theorem 21.8 of Agrachev and Sachkov [1].

A point at which φt is degenerate is called a conjugate point, and the endpoint
map φt is degenerate when its Jacobian matrix is singular. To compute this Jacobian
matrix, extend the normal extremal (p, q) in Theorem 3.2 to (p, q) : [0, T ] × R

n →
R

n × R
n so that (p(t, a), q(t, a)) is the normal extremal with initial costate p(0) = a.

Let J(t) be the Jacobian matrix of φt, and let M(t) be the Jacobian matrix of the
costate p(t, a) with respect to a, i.e.,

[J(t)]ij =
∂qi(t, a)

∂aj
, [M(t)]ij =

∂pi(t, a)

∂aj
.

Then the entries of M and J can be found by solving the differential equations
(3.8)

d

dt
[M(t)]ij =

∂

∂aj

∂pi(t, a)

∂t
= − ∂

∂aj

∂H

∂qi
= −

n∑
k=1

(
∂2H

∂qk∂qi

∂qk
∂aj

+
∂2H

∂pk∂qi

∂pk
∂aj

)
,

(3.9)
d

dt
[J(t)]ij =

∂

∂aj

∂qi(t, a)

∂t
=

∂

∂aj

∂H

∂pi
=

n∑
k=1

(
∂2H

∂qk∂pi

∂qk
∂aj

+
∂2H

∂pk∂pi

∂pk
∂aj

)
,

where H is the Hamiltonian function defined in (3.5). These equations can be written
in matrix form as

(3.10)
d

dt

[
M
J

]
=

[−Hpq −Hqq

Hpp Hqp

] [
M
J

]
,

where subscripts denote derivatives with respect to the variables p and q. From the
definitions of M and J, it is clear that

(3.11) M(0) = In×n, J(0) = 0n×n.

The system (3.10) along with the initial conditions (3.11) give a set of linear time-
varying matrix differential equations that, when solved, provide the Jacobian of the
endpoint map φt. A conjugate point occurs when det(J(t)) = 0 for some t ∈ (0, T ].
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4. The set of local optima may or may not be path-connected. In the
previous section, we constructed a set C in (3.7) that contains all normal (q, u) of
(3.1) for all possible choices of the terminal state constraint b. The set of all normal
(q, u) that are local optima of (3.1) is some subset of C. In this section, we consider
the topological properties of this subset. First, in section 4.1 we describe the problem
of showing that this subset is path-connected. Then, in section 4.2 we analyze this
subset for five example optimal control problems. Through these examples, we will
see that this subset either can be path-connected or can consist of two or more disjoint
components.

4.1. A formal statement of the question about local optima. We previ-
ously defined A in (3.6) to be the set of initial costate values p(0) ∈ R

n that map to
normal extremals of the system (3.3). Theorem 3.2 gave a test to determine which
normal extremals correspond to local minima of (3.1). Now define Amin ⊂ A by

(4.1) Amin = {a ∈ A : (p, q) = Γ(a) satisfies the conditions in Theorem 3.2} .

Amin is the set of a ∈ A corresponding to normal extremals (p, q) = Γ(a) that do not
have conjugate points on the interval (0, T ]. The set of all local optima of (3.1) over
all possible choices of the terminal state constraint b is then

(4.2) Cmin = Ψ(Amin) ⊂ C.

The main question that we address in this paper is the following:

When is the set Cmin path-connected? That is, assume (q0, u0) and (q1, u1) : [0, T ] →
R

n×U are local optima of (3.1) for b = q0(T ) and b = q1(T ), respectively. When are
these two solutions connected by a path in the set of all local optima of (3.1) over all
possible choices of b?

To show that (q0, u0) and (q1, u1) are connected by a path in Cmin, we must find a
continuous function γ : [0, T ]× [0, 1]→ R

n×U that satisfies the following properties:
1. γ(t, 0) = (q0(t), u0(t)) for all t ∈ [0, T ];
2. γ(t, 1) = (q1(t), u1(t)) for all t ∈ [0, T ];
3. for all s ∈ [0, 1], (qs, us) = γ(·, s) is a local optimum of (3.1) for b = γ(T, s).

The following lemma simplifies this problem by allowing us to search for a continuous
function α : [0, 1] → Amin.

Lemma 4.1. If Amin is path-connected, then Cmin is path-connected.

Proof. Cmin = Ψ(Amin) and Ψ is continuous. Thus, if Amin is path-connected,
then Cmin is also path-connected.

In the remainder of the paper, we will be concerned with showing that the set
Amin is path-connected.

4.2. Five examples with distinct sets of local optima. We will now com-
pute Amin for five one-dimensional optimal control problems. Whereas the application
that will be considered in section 7 has physical relevance, these example problems
are included simply to show that the properties of the set of local optima can vary
for different optimal control problems. In some of these examples, we will be able
to explicitly compute or bound ∂q(t, a)/∂a instead of using the differential equations
(3.10) to compute the Jacobian of the endpoint map φt in Theorem 3.2. The set Amin
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will exhibit distinct properties in each of the five examples. In particular, we will see
that the set Amin can be empty, the entire set Rn, a path-connected subset of Rn, or
a disconnected subset of Rn (made up of two or more connected components).

The five example optimal control problems that we consider all have the form

(4.3)

minimize
q,u

∫ 2π

0

1

2
u2 + Fi(q) dt

subject to q̇(t) = u(t),

q(0) = 0, q(2π) = b,

where (q, u) : [0, 2π] → R×R, and Fi is a smooth function. In each case, the optimal
control, found from (3.4) is u(t) = p(t), and it is easy to show that assumptions (A1)–
(A3) hold. Also, there are no abnormal extremals, since setting k = 0 in (3.2) implies
p(t) = 0. Thus A = R in all five problems. Throughout this section, we will use a to
denote the initial condition for p(t) in the Hamiltonian system (3.3).

Example 1. First, consider the linear quadratic problem with

(4.4) F1(q) = 0.

Applying Theorem 3.1 gives the Hamiltonian system

q̇ = p, ṗ = 0.

The normal extremal beginning at p(0) = a is

q(t) = at, p(t) = a.

It is clear that ∂q(t, a)/∂a is positive for t ∈ (0, 2π], so every normal (q, u) is a local
optimum by Theorem 3.2. Thus Amin = R and Cmin is path-connected by Lemma 4.1.

Example 2. Now consider the linear quadratic problem with

(4.5) F2(q) = −1

2
q2.

Applying Theorem 3.1 gives the Hamiltonian system

q̇ = p, ṗ = −q.

The normal extremal beginning at p(0) = a is

q(t) = a sin(t), p(t) = a cos(t).

It is clear that ∂q(t, a)/∂a is zero at t = π ∈ (0, 2π]. Therefore, Amin = ∅ and there
are no local optima. In Figure 2a, we plot the first time tc at which ∂q(t, a)/∂a = 0
(i.e., the first conjugate time) as a function of the choice of a = p(0). In this case,
tc(a) is a horizontal line at π. (Note that if we had chosen the final time to be less
than π, then every extremal would be a local optimum and Amin = R.)

In both of the previous examples, we found that the Jacobian ∂q(t, a)/∂a is
independent of the choice of a, i.e., q(t) depends linearly on a. This is true of all
linear quadratic optimal control problems [2]. The existence of local optima in linear
quadratic problems depends only on the dynamics f(q, u), the cost function g(q, u),
and the final time T , and does not depend on the choice of a (and therefore does not
depend on the choice of b = q(T )).
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a
−2 0 2

tc

0

π

2π

3π

4π

F2

F3F4

T

(a)

a
−10 0 10

tc

0

π

2π

3π

4π
F5

(b)

Fig. 2. The first conjugate time tc as a function of a ∈ A for four optimal control problems of
the form (4.3) with (a) Fi given by (4.5)–(4.7) and (b) Fi given by (4.8). Local solutions of (4.3)
correspond to a ∈ A for which tc(a) > T = 2π. The sets of local solutions for these four example
problems exhibit distinct topological properties.

Example 3. As a more interesting nonlinear example, now consider

(4.6) F3(q) = −1

4
q4.

Applying Theorem 3.1 gives the Hamiltonian system

q̇ = p, ṗ = −q3,

and ∂q(t, a)/∂a is found by solving (3.8) and (3.9), which are given by

J̇ = M, Ṁ = −3q(t)2J.

If we choose a = 0, then J(t) = t, so ∂q(t, a)/∂a > 0 for all t ∈ (0, 2π]. Thus Amin

is not empty, since 0 ∈ Amin. The first conjugate time tc was computed numerically
and is shown in Figure 2a for a range of values of a ∈ A. The set Amin corresponds
to points a for which tc(a) > 2π. We see that in this example, tc(a) decreases as
the magnitude of a increases, and Amin consists of one path-connected component.
Therefore, by Lemma 4.1, Cmin is path-connected.

Example 4. Now consider a second nonlinear problem with

(4.7) F4(q) = cos(q).

We claim that for this problem, Amin is disconnected. Applying Theorem 3.1 gives
the Hamiltonian system

q̇ = p, ṗ = − sin(q).

We can now use (3.8) and (3.9) to find ∂q(t, a)/∂a by solving

J̇ = M, Ṁ = − cos(q(t))J.

If we choose a = 0, then J(π) = 0. Thus ∂q(t, a)/∂a = 0 at t = π ∈ (0, 2π] and
0 /∈ Amin. In Appendix A, we show that if |a| > 2, then a ∈ Amin. Thus Amin is
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not path-connected. The first conjugate time tc (computed numerically) is shown in
Figure 2a for a range of a ∈ A. Since a ∈ Amin if and only if tc(a) > 2π, we see that
Amin has two path-connected components.

Example 5. As a final example, consider

(4.8) F5(q) = − cos(q)− 1

8
q2.

Theorem 3.1 gives the Hamiltonian system

q̇ = p, ṗ = sin(q)− 1

4
q,

and ∂q(t, a)/∂a is found by solving (3.8) and (3.9), which are given by

J̇ = M, Ṁ =

(
cos(q(t)) − 1

4

)
J.

If we choose a = 0, then

J(t) =
1√
3

(
e

√
3

2 t − e−
√

3
2 t

)
,

and ∂q(t, a)/∂a > 0 for all t ∈ (0, 2π]. Therefore, 0 ∈ Amin. The first conjugate time
tc was computed numerically and is shown in Figure 2b. As a varies, tc(a) oscillates
around 2π, and therefore Amin consists of many path-connected components.

Based on these five examples, we have seen that the set Amin can have distinct
topological properties for different optimal control problems. If the optimal control
problem cannot be solved analytically (as was the case in Examples 3, 4, and 5), then
showing that Amin is path-connected without resorting to numerical computations is
a nontrivial task.

5. Sufficient conditions for a path-connected set of local optima. In
section 4.2, we saw that the topological properties of Amin, defined in (4.1), vary
for different optimal control problems, and there was no obvious way to determine
whether Amin is path-connected. In this section, we give a sufficient condition for
Amin to be path-connected. Our main result is stated in section 5.1 and proved in
section 5.2.

5.1. The main result. In Theorem 5.1, we state a sufficient condition for the set
Amin to be path-connected, which sometimes allows us to determine the topological
properties of the set of local optima. Since these are sufficient conditions, there are
optimal control problems for which these conditions are not satisfied, but Amin is path-
connected. We will see examples of this when we apply Theorem 5.1 to the examples
considered in section 4.2. Before stating the theorem, we need one piece of notation.
For L > 0 and μ ∈ R

n, define the matrix SL
μ ∈ R

n×n by SL
μ = diag (Lμ1 , . . . , Lμn).

Theorem 5.1 (sufficient conditions for a path-connected set of local optima).
Suppose A is path-connected. If there exist μ ∈ R

n and μ0 ∈ R such that the Hamil-
tonian function in (3.5) satisfies

(5.1) H(SL
ν p, S

L
μ q) = Lμ0+1H(p, q)

for all p and q ∈ R
n and positive real numbers L > 0, where ν ∈ R

n satisfies νi =
μ0 − μi, then Amin is path-connected.
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This sufficient condition allows us to check whether Amin is path-connected by
only checking that the Hamiltonian function H satisfies a certain scaling property. It
is somewhat surprising that the set of all local optima can be characterized in this
way without explicitly computing the sufficient conditions for optimality described
in Theorem 3.2. As we will show in the proof of Theorem 5.1, this scaling property
allows us to construct paths in the set Amin connecting any two local solutions.

Looking back to the example problems considered in section 4.2 and applying
Theorem 5.1 to the problem with Fi given by (4.4), the Hamiltonian H is given by

H(p, q) =
1

2
p2.

Choosing μ = 0 and μ0 = 1 satisfies the condition in (5.1). Therefore, we could have
determined that Cmin is path-connected by using Theorem 5.1.

For the example problem with Fi given by (4.5), the Hamiltonian function is

H(p, q) =
1

2

(
p2 + q2

)
.

No choice of μ and μ0 satisfies (5.1). In this example, if we had set the final time to
be less than π, then Amin = R, which is path-connected. This example demonstrates
that Theorem 5.1 is not necessary for a path-connected set of local optima.

With Fi given by (4.6), the Hamiltonian is given by

H(p, q) =
1

2
p2 +

1

4
q4.

Choosing μ = 1 and μ0 = 3 satisfies the condition in (5.1), so we could have concluded
that Cmin is path-connected using Theorem 5.1.

With Fi given by (4.7), the Hamiltonian function is

H(p, q) =
1

2
p2 − cos(q).

Since Amin is not path-connected for this problem, the converse of Theorem 5.1 tells
us that no choice of μ and μ0 satisfies (5.1). This fact can easily be checked. The
same result is true with Fi given by (4.8).

5.2. Proof of the main result. In this section, we prove Theorem 5.1. We first
show that the condition (5.1) in Theorem 5.1 implies that the necessary and sufficient
conditions in Theorems 3.1 and 3.2 are scale-invariant with respect to time. This
property allows us to define scaling relationships between certain solutions of (3.3)
and (3.10). These scaling relationships will provide us with canonical paths in the set
Amin, i.e., canonical ways of deforming local optima of (3.1). We then use these paths
to show that any two points in Amin can be connected by a path contained in Amin.
This result shows that Amin (and therefore Cmin, defined in (4.2)) is path-connected.

Scale-invariant Hamiltonian systems. In section 2, we briefly discussed a
property satisfied by some systems of differential equations called scale invariance.
This property is often defined for a general system of differential equations [20, 28, 4].
The following definition specializes this general property to Hamiltonian systems.

Definition 5.2. Consider the 2n-dimensional Hamiltonian system

(5.2)
dQ

dt
=

∂H(P,Q)

∂P
,

dP

dt
= −∂H(P,Q)

∂Q
,
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where H is smooth. If there exist μ and ν ∈ R
n such that for any L > 0 and any

solution (P,Q) of (5.2), the functions qi(t) = LμiQi(Lt) and pi(t) = LνiPi(Lt) satisfy

dq

dt
=

∂H(p, q)

∂p
,

dp

dt
= −∂H(p, q)

∂q
,

then we say that the system (5.2) is scale-invariant.

When analyzing a scale-invariant Hamiltonian system, knowing a single solution
(P,Q) of (5.2) provides a family of solutions defined by

(5.3) (p(t), q(t)) = (SL
ν P (Lt), SL

μQ(Lt)),

with L ∈ (0,∞). Two solutions of (5.2) in this family can then be continuously
deformed into one another within the set of solutions of (5.2) by continuously varying
the scaling parameter L.

Checking that the conditions in Definition 5.2 hold for all solutions (P,Q) of (5.2)
requires us to compute these solutions, which is often not possible. The following
lemma provides a condition in terms of the Hamiltonian function for the system (5.2)
to be scale-invariant. This is easier to check than the conditions in Definition 5.2.

Lemma 5.3. If there exist μ ∈ R
n and μ0 ∈ R such that the Hamiltonian function

H in (5.2) satisfies the condition (5.1), then the system (5.2) is scale-invariant.

Proof. Let L > 0, let (P,Q) be a solution of (5.2), define ν ∈ R
n as in Theorem

5.1, and define (p, q) as in (5.3). Using (5.1), (5.2), (5.3), and the fact that μi+νi = μ0

for each i = 1, . . . , n, we have

d

dt
(qi(t)) =

d

dt
(LμiQi(Lt))

= L1+μi
d

d(Lt)
(Qi(Lt))

= L1+μi
∂

∂Pi
(H(P (Lt), Q(Lt)))

= L1+μi+νi
∂

∂pi
(H(P (Lt), Q(Lt)))

=
∂

∂pi
(L1+μ0H(P (Lt), Q(Lt)))

=
∂

∂pi
(H(SL

ν P (Lt), SL
μQ(Lt)))

=
∂

∂pi
H(p(t), q(t)).

A similar calculation shows that

(5.4)
d

dt
(pi(t)) = − ∂

∂qi
H(p(t), q(t)).

For given μ ∈ R
n and μ0 ∈ R, if the Hamiltonian function H satisfies the condi-

tions in Lemma 5.3, then we say that H is invariant under the scaling (μ, μ0).
Thus far, we have only considered solutions of the Hamiltonian system (5.2). The

following lemma shows that if the Hamiltonian function H is invariant under the
scaling (μ, μ0), then solutions of (3.10) also satisfy scaling relationships.
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Lemma 5.4. Assume H is invariant under the scaling (μ, μ0), and define ν ∈ R
n

as in Theorem 5.1. Let (P,Q) be a solution of (5.2), let A = P (0), and let

[J]ij (t) =
∂Qi(t, A)

∂Aj
,

where we have extended Q to depend explicitly on A, as was done in section 3.2. Let
L > 0, define (p, q) as in (5.3), and let a = p(0). Then the matrix Ĵ(t) with entries

[Ĵ]ij(t) =
∂qi(t, a)

∂aj

satisfies

(5.5) Ĵ(t) =
(
SL
μ

)
J(Lt)

(
SL
ν

)−1
.

Proof. For each component of Ĵ(t), we have

[Ĵ]ij(t) =
∂qi(t, a)

∂aj
=

∂LμiQi(Lt,A)

∂LνjAj
=

[
SL
μ

]
ii

(
[J]ij (Lt)

) [
SL
ν

]−1

jj
.

We conclude that (5.5) holds.

Constructing paths in the set of local solutions. We have shown that the
symmetry admitted by a scale-invariant Hamiltonian system partitions the solutions
of the Hamiltonian system into families, with solutions in each family related by (5.3).
This symmetry also provides a canonical way of continuously deforming a solution into
any other solution in the same family. In section 3, Theorems 3.1 and 3.2 relate local
solutions of the optimal control problem (3.1) to solutions of the Hamiltonian system
(3.3). Thus, if the Hamiltonian system (3.3) is scale-invariant, the local solutions of
(3.1) might be partitioned in a similar way. This result is not immediately obvious
since local solutions of (3.1) do not correspond to all solutions of (3.3), but only to
normal solutions of (3.3) that satisfy the sufficient conditions in Theorem 3.2.

The following two lemmas show that, even with these two additional constraints
(i.e., normality and the absence of conjugate points), the set of local solutions of (3.1)
can be partitioned using the relation (5.3). First, recall from (3.6) that A is the set of
initial costate values p(0) that map to normal extremals (p, q). The following lemma
shows that for any a ∈ A, we can scale a according to (5.3) and remain in the set A.

Lemma 5.5. Assume H is invariant under the scaling (μ, μ0) and define ν ∈ R
n

as in Theorem 5.1. If a ∈ A and L > 0, then SL
ν a ∈ A.

Proof. Let a ∈ A, L > 0, (P,Q) = Γ(a), and (p, q) = Γ(SL
ν a). By Lemma 5.3,

the Hamiltonian system (3.3) is scale-invariant. Note that

(p(0), q(0)) = (SL
ν P (0), SL

μQ(0)).

By existence and uniqueness of solutions of (3.3) (from assumption (A1)), (P,Q) and
(p, q) must satisfy (5.3). Thus, by Definition 5.2, both (P,Q) and (p, q) solve (3.3) for
the same Hamiltonian function. If (p, q) is abnormal, this implies (P,Q) is abnormal,
which contradicts a ∈ A. We conclude that SL

ν a ∈ A.

The previous lemma shows that the set A can be partitioned using the scaling
a �→ SL

ν a with L > 0. The next lemma shows that the same is true for Amin (recall
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from (4.1) that Amin is the set of all points in A corresponding to normal extremals
without conjugate points). Before stating this lemma, recall the result that conjugate
times along normal extremals are positive and discrete [1]. Therefore, if the normal
extremal (p, q) = Γ(a) for some a ∈ A has conjugate times, there exists a smallest
conjugate time. Denote this smallest conjugate time by tc(a) as was done in section
4. If the extremal Γ(a) does not have conjugate times, let tc(a) = ∞.

Lemma 5.6. Assume H is invariant under the scaling (μ, μ0), and define ν ∈ R
n

as in Theorem 5.1. If a ∈ A and 0 < L < tc(a)/T , then SL
ν a ∈ Amin.

Proof. Let a ∈ A, 0 < L < tc(a)/T , (P,Q) = Γ(a), and (p, q) = Γ(SL
ν a). The

Hamiltonian system (3.3) is scale-invariant by Lemma 5.3, and (p, q) is a normal
extremal of (3.1) by Lemma 5.5.

Let J(t) be the Jacobian matrix computed in (3.9) of the endpoint map φt along

the normal extremal (P,Q), and let Ĵ(t) be the Jacobian along the normal extremal

(p, q). By Lemma 5.4, J(t) and Ĵ(t) are related by (5.5). Since L > 0, SL
μ and SL

ν are

nonsingular. Thus Ĵ(t) is singular if and only if J(Lt) is singular.
By definition, tc(a) is the first time at which J(t) is singular. For t ∈ [0, T ],

we have Lt < tc(a) by assumption. Therefore, det(Ĵ(t)) �= 0 for all t ∈ [0, T ]. By
Theorem 3.2, we conclude that SL

ν a ∈ Amin.

The previous lemma shows that, given any a ∈ A, the curve SL
ν a, with 0 < L <

tc(a)/T , is completely contained in Amin. To show that Amin is path-connected, we
will show that any two such curves can be connected using a third curve completely
contained in Amin. This will establish Theorem 5.1. Before proving this result, we
need the following lemma, which shows that conjugate points are bounded from below
along continuous paths in A.

Lemma 5.7. Let α : [0, 1] → A be continuous. Then there exists ε > 0 such that

ε < inf
s∈[0,1]

tc(α(s)).

Proof. See Proposition 2.6 of Sachkov [23].

Proof of Theorem 5.1. We can now prove our main result. In the proof, we
will only consider the case when Amin is nonempty. If Amin = ∅, we will consider it
to be path-connected.

Let a0, a1 ∈ Amin. Let α : [0, 1] → A be a continuous path such that α(0) = a0
and α(1) = a1. Such a path exists since A is assumed to be path-connected. Choose
Lmin such that

0 < Lmin < min

{
1

T

(
inf

s∈[0,1]
tc(α(s))

)
, 1

}
,

which is possible by Lemma 5.7. Now consider the path α1 : [Lmin, 1] → A given by

(5.6) α1(s) = Ss
νa0.

Since a0 ∈ Amin, we have T < tc(a0). This implies that s < tc(a0)/T for all s ∈
[Lmin, 1]. Therefore, by Lemma 5.6, we have α1(s) ∈ Amin for all s ∈ [Lmin, 1]. Next,
consider the path α2 : [0, 1] → A given by

(5.7) α2(s) = SLmin
ν α(s).
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Since Lmin < tc(α(s))/T for all s ∈ [0, 1], we have α2(s) ∈ Amin for all s ∈ [0, 1] by
Lemma 5.6. Finally, consider the path α3 : [Lmin, 1] → A given by

(5.8) α3(s) = Ss
νa1.

Since a1 ∈ Amin, we have T < tc(a1). This implies that s < tc(a1)/T for all s ∈
[Lmin, 1]. By Lemma 5.6, we have α3(s) ∈ Amin for all s ∈ [Lmin, 1].

The union β = α1 ∪ α2 ∪ α3 is a continuous path in Amin connecting a0 and a1.
We conclude that Amin (and therefore Cmin) is path-connected.

6. Sets of local optima under additional constraints. Thus far, we have
considered the set of all local optima for all possible choices of the terminal state. In
some situations, it may be of interest to consider the set of all local optima that satisfy
some additional constraints. The scale invariance property used in the previous section
to prove Theorem 5.1 can sometimes be used to show that the set of constrained local
optima is path-connected. As an example, suppose we want to show that the set

(6.1)

{
(q, u) ∈ Cmin : ‖qj(t)‖∞ ≡ max

t∈[0,T ]
|qj(t)| ≤ qmax

}

is path-connected for some j ∈ {1, 2, . . . , n} and some qmax > 0. Showing that this set
is path-connected is equivalent to showing that some subset ofAmin is path-connected.

Suppose that (q, u) = Ψ(a) for some a ∈ Amin satisfies the constraint on qj(t)
and the Hamiltonian function (3.5) is invariant under the scaling (μ, μ0). Then, if
(q′, u′) = Ψ(SL

ν a) for some 0 < L ≤ 1, we have from (5.3) that q′j(t) = Lμjqj(Lt) and

‖q′j(t)‖∞ = Lμj‖qj(Lt)‖∞ ≤ Lμj‖qj(t)‖∞ ≤ Lμjqmax.

Therefore, if μj > 0, ‖q′j(t)‖∞ decreases as L decreases. To show that the constrained
set of local optima (6.1) is path-connected, the proof of Theorem 5.1 can be modified
by choosing Lmin to be small enough so that the constraint on qj(t) is satisfied at
each point along the path β.

We conclude that if μj > 0, then the set (6.1) is path-connected. To enforce a
bound on ‖pj(t)‖∞, we require that νj > 0. Bounds on multiple states and costates
are handled by requiring the corresponding components of μ and ν to be positive.

Arguments based on scale invariance similar to those just used can be applied to
other types of constraints. In section 6.1 below, we give particular consideration to a
constraint that bounds the total cost associated to each locally optimal trajectory.

6.1. Trajectories with bounded total cost. In this section, we consider the
set of all optima with a bounded total cost. If we assume that the cost function is
nonnegative and scales in a similar way to the Hamiltonian in Theorem 5.1, then
the set of all local optima with a bounded total cost is path-connected. To prove
this result, first recall that by using assumptions (A1)–(A3) and the implicit function
theorem, we can locally write the optimal control u found from condition (3.4) as a
function of the costate p and the state q. Define this function by u(t) = Λ(p(t), q(t)).
Furthermore, define the functions fΛ : R

n × R
n → R

n and gΛ : R
n × R

n → R by

fΛ(p, q) = f(q(t),Λ(p, q)), gΛ(p, q) = g(q(t),Λ(p, q)).

The cost function and dynamic constraints can now be expressed as functions of
the extremal (p, q). The following lemma gives conditions on fΛ and gΛ for the
Hamiltonian system (3.3) to be scale-invariant.
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Lemma 6.1. If there exist μ ∈ R
n and μ0 ∈ R such that the cost function and

dynamic constraints in (3.1) satisfy

(6.2) gΛ(S
L
ν p, S

L
μ q) = Lμ0+1gΛ(p, q), fΛ(S

L
ν p, S

L
μ q) = LSL

μ fΛ(p, q)

for all p and q ∈ R
n and positive real numbers L > 0, where ν ∈ R

n satisfies νi =
μ0 − μi, then the Hamiltonian system (3.3) is scale-invariant.

Proof. Using (3.2), we have

H(SL
ν p, S

L
μ q) =

(
SL
ν p

)T
fΛ(S

L
ν p, S

L
μ q)− kgΛ(S

L
ν p, S

L
μ q)

= pT
(
SL
ν

)T
LSL

μ fΛ(p, q)− kLμ0+1gΛ(p, q)

= Lμ0+1
(
pT fΛ(p, q)− kgΛ(p, q)

)
= Lμ0+1H(p, q).

By Lemma 5.3, the Hamiltonian function in (3.4) is invariant under the scaling (μ, μ0),
and the Hamiltonian system (3.3) is therefore scale-invariant.

Recall from (3.1) that C(q, u) denotes the total cost associated with the trajectory
(q, u). The following lemma shows that the total cost along paths in A of the form
SL
ν a with 0 < L ≤ 1 and a ∈ A can be bounded.

Lemma 6.2. Suppose the conditions in Theorem 5.1 are satisfied and gΛ satisfies
the conditions in Lemma 6.1. Furthermore, suppose gΛ is nonnegative. If a ∈ A and
0 < L ≤ 1, then

C(Ψ(SL
ν a)) ≤ Lμ0C(Ψ(a)).

Proof. Let (P,Q) = Γ(a) and (p, q) = Γ(SL
ν a), which are related by (5.3). Using

(6.2), we have

C(Ψ(SL
ν a)) =

∫ T

0

gΛ(p(t), q(t)) dt

=

∫ T

0

gΛ(S
L
ν P (Lt), SL

μQ(Lt)) dt

=

∫ T

0

Lμ0+1gΛ(P (Lt), Q(Lt)) dt

= Lμ0

∫ LT

0

gΛ(P (τ), Q(τ)) dτ

≤ Lμ0

∫ T

0

gΛ(P (τ), Q(τ)) dτ

= Lμ0C(Ψ(a)).

The inequality holds since gΛ is nonnegative and L ≤ 1.

We can now state Theorem 6.3, which provides a sufficient condition for the set
of local optima with a bounded total cost to be path-connected.

Theorem 6.3. Suppose the conditions in Theorem 5.1 are satisfied with μ0 > 0,
and let C0 > 0. If gΛ is nonnegative and satisfies the conditions in Lemma 6.1, then
the set {(q, u) ∈ Cmin : C(q, u) ≤ C0} is path-connected.

D
ow

nl
oa

de
d 

01
/2

6/
17

 to
 1

30
.1

26
.2

55
.2

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

992 ANDY BORUM AND TIMOTHY BRETL

Proof. If the set {a ∈ Amin : C(Ψ(a)) ≤ C0} is empty, we will consider it and
{(q, u) ∈ Cmin : C(q, u) ≤ C0} to be path-connected.

Now assume the set {a ∈ Amin : C(Ψ(a)) ≤ C0} is nonempty, and let a0 and
a1 ∈ Amin be such that C(Ψ(a0)) and C(Ψ(a1)) ≤ C0. Let α : [0, 1] → A be a
continuous path such that α(0) = a0 and α(1) = a1. Such a path exists since A is
assumed to be path-connected. Choose L1 such that

0 < L1 <
1

T

(
inf

s∈[0,1]
tc(α(s))

)
,

which is possible by Lemma 5.7.
Since g(q, u) is smooth, C(Ψ(α(s))) is bounded from above for all s ∈ [0, 1]. Let

Cmax > 0 be such that

sup
s∈[0,1]

C(Ψ(α(s))) < Cmax.

Now choose L2 such that

0 < L2 <

(
C0

Cmax

) 1
µ0

.

Now let Lmin = min{L1, L2, 1} and consider the path β = α1∪α2∪α3 constructed
in the proof of Theorem 5.1 for this choice of Lmin. Since Lmin ≤ L1, this path is
completely contained within Amin. Also, since μ0 > 0, Lemma 6.2 gives

C(Ψ(α1(s))) ≤ sμ0C(Ψ(a0)) ≤ C(Ψ(a0)) ≤ C0,

C(Ψ(α3(s))) ≤ sμ0C(Ψ(a1)) ≤ C(Ψ(a1)) ≤ C0

for all s ∈ [Lmin, 1]. Finally, using Lemma 6.2, we have

C(Ψ(α2(s))) = C(Ψ(SLmin
ν α(s))) ≤ Lμ0

minC(Ψ(α(s))) ≤ Lμ0

2 Cmax < C0

for all s ∈ [0, 1]. Therefore, the path β = α1 ∪ α2 ∪ α3 is contained within the set
{a ∈ Amin : C(Ψ(a)) ≤ C0}, and we conclude that this set is path-connected. Since
Ψ is continuous, the image of this set, which is {(q, u) ∈ Cmin : C(q, u) ≤ C0}, is
path-connected.

7. Application to the planar elastica. In this section, we apply the results
in Theorems 5.1 and 6.3 to an optimal control problem whose associated Hamiltonian
function is scale-invariant. Consider a thin inextensible wire or rod whose ends are
held by robotic grippers, and assume the rod is confined to deform in a plane. We
will model the rod as a planar elastica [22, 23, 25]. Without loss of generality, we may
assume that the rod has length 1. A point along the rod at arc-length t ∈ [0, 1] is
described by the vector q(t) ∈ R

3, where (q1(t), q2(t)) gives the position in the plane
and q3(t) is the angle between the tangent to the rod and the q1-axis. We will assume
that the base of the rod is held fixed at the origin, so that q(0) = 0.

As discussed in section 2.1, we use a quasi-static model of the rod. This model
ignores the dynamics of the rod and assumes that the grippers holding the ends of
the rod move slow enough so that the rod is in static equilibrium at each point in
time. Under this quasi-static assumption, the configuration of the rod for a given set
of boundary conditions (i.e., robot gripper poses) is a shape that locally minimizes
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the stored elastic energy in the rod. We call a shape that locally minimizes the elastic
energy a stable equilibrium configuration. Under the assumptions of linear elasticity,
the elastic energy is proportional to the integral of the squared curvature along the
length of the rod. The shape of the rod is a local solution of the optimal control
problem

(7.1)

minimize
q,u

C(q, u) =
1

2

∫ 1

0

u(t)2 dt

subject to q̇(t) =

⎡
⎣cos(q3(t))sin(q3(t))

u(t)

⎤
⎦ ,

q(0) = 0, q(1) = b

for some gripper placement b ∈ R
3. In the optimal control problem (7.1), the control

input u is the bending strain along the rod, the cost function is the elastic energy stored
in the rod, and the dynamic constraints ensure that the rod is inextensible. Although
we assume that the rod behaves according to the laws of linear elasticity, we are using
a geometrically exact (i.e., geometrically nonlinear) model of the rod. Therefore, while
linear elasticity assumes that the bending strain u stays small, changes in the rod’s
configuration (q, u) do not need to be small.

Due to the geometric nonlinearity of the elastic rod model (7.1), specifying the
boundary condition b in (7.1) does not uniquely determine the configuration (q, u)
of the rod. This ambiguity is one reason why finding a path of the robotic gripper
holding the end of the rod that causes the rod to move from an initial shape to a goal
shape appears to be challenging. However, we have shown that points in the space A
are in one-to-one correspondence with normal (q, u) of (7.1), i.e., equilibrium configu-
rations of the rod. Furthermore, we have shown that points in Amin are in one-to-one
correspondence with local optima of (7.1), i.e., stable equilibrium configurations of
the rod. As a consequence, we can use Theorem 5.1 to construct a path in Amin that
corresponds to a continuous deformation of the rod through the set of stable equilib-
rium configurations, and that can be implemented without ambiguity by a path of the
robotic gripper. Note the importance of keeping the rod in static equilibrium while
it is being deformed—otherwise, the quasi-static assumption we made in deriving a
model of the rod would be violated.

We begin by applying Theorem 3.1 to the optimal control problem (7.1). The
parameterized Hamiltonian is given by

Ĥ(p, q, k, u) = p1 cos(q3) + p2 sin(q3) + p3u− k

2
u2.

First, consider the abnormal case with k = 0. The parameterized Hamiltonian Ĥ is
extremized in u when p3 = 0. Now consider the normal case with k = 1. The optimal
control, found from (3.4), is u = p3. The Hamiltonian system (3.3) is given by

(7.2)
q̇1 = cos(q3), q̇2 = sin(q3), q̇3 = p3,

ṗ1 = 0, ṗ2 = 0, ṗ3 = p1 sin(q3)− p2 cos(q3).

In the Hamiltonian system (7.2), the costate trajectory p has a physical interpretation.
The costates p1 and p2 describe the forces acting on the rod, and the costate p3
describes the torque acting on the rod [7].
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Abnormal extremals are achieved by choosing the initial condition p2(0) = p3(0) =
0. Physically, the abnormal extremals correspond to the straight configuration of the
rod. Therefore, using our earlier notation,

A = {(a1, a2, a3) ∈ R
3 : (a2, a3) �= (0, 0)},

which is path-connected. The existence and uniqueness assumptions in (A1) are
satisfied by (7.2) [22]. To establish assumption (A2), it suffices to show that (p, q) can
be uniquely determined from a normal (q, u) and its derivatives. Taking derivatives
of the differential equation for p3 in (7.2) and recalling that u = p3, we have

p3(0) = u(0), −p2(0) = u̇(0), p1(0)p3(0) = ü(0), p2(0)(p3(0)
2 − p1(0)) =

...
u(0).

Since (q, u) is normal, p2(0) and p3(0) cannot both be zero. Therefore, these four
equations allow us to uniquely solve for p(0), which allows us to find (p, q) by solving

(7.2). Finally, note that assumption (A3) is satisfied since ∂2Ĥ/∂u2 = −1. Theorem
3.2 can therefore be used as a test for local optimality.

We now claim that the Hamiltonian function

(7.3) H(p, q) = p1 cos(q3) + p2 sin(q3) +
1

2
p23

satisfies the conditions in Theorem 5.1. Let μ = (−1,−1, 0) and μ0 = 1. Then, from
Theorem 5.1, we have ν = (2, 2, 1) and

H(SL
ν p, S

L
μ q) = L2

(
p1 cos(q3) + p2 sin(q3) +

1

2
p23

)
= Lμ0+1H(p, q)

for all L > 0. Thus the Hamiltonian function (7.3) is invariant under the scaling
(μ, μ0). We can therefore conclude the following result using Theorem 5.1.

Theorem 7.1. The set of all stable equilibrium configurations of the planar elas-
tica (i.e., Cmin) is path-connected.

In [25], a decomposition of Amin into disjoint sets is defined, and it is shown
that some of these sets are path-connected. This result is proved by analyzing the
properties of the exponential map, which sends initial costate values (i.e., a ∈ A)
to state trajectories q(t). The scale invariance property that we use in Theorem 5.1
allows us to show that the entire set Amin is path-connected.

Furthermore, it is clear that gΛ(p, q) =
1
2p

2
3 is nonnegative and satisfies the con-

ditions in Lemma 6.1. Therefore, since μ0 > 0, we can conclude the following result
using Theorem 6.3.

Theorem 7.2. The set of all stable equilibrium configurations of the planar elas-
tica with an elastic potential energy less than a given bound is path-connected.

To see how these results can be applied to the problem of manipulation planning,
assume that initial and goal stable equilibrium configurations of the rod are given.
This is equivalent to providing two points a0 and a1 ∈ Amin. Using the construction
in the proof of Theorem 5.1, we can find a path β : [0, 1] → Amin connecting these
two points. If we require the stored elastic energy in the rod to be bounded, the
construction in the proof of Theorem 6.3 can be used.

Once the path β(s) is found, the map Ψ ◦ β gives a continuous sequence of local
solutions of (7.1), given by (qs(t), us(t)) ≡ Ψ ◦ β(s) with s ∈ [0, 1]. To execute this
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q1

q2

snapshots
along the path α

Fig. 3. A sequence of configurations of a planar elastica corresponding to the path α in Figure
4a. The leftmost and rightmost configurations are local solutions of (7.1), i.e., they are stable
equilibrium configurations. The six intermediate configurations are not local minima of (7.1) and
are therefore unstable equilibrium configurations.

a3

−10

0

10

a1

0 −40 −80
a2

−20−10
0

α

α1

α2

α3

(a)

s
0 0.5 1

tc

0

1

2

α

α1
α2 α3

(b)

Fig. 4. (a) The space A ⊂ R
3 corresponding to all initial costate values that lead to normal

extremals of (7.2), and (b) the first conjugate time along the paths α, α1, α2, and α3. The path
α (which is not contained in Amin) corresponds to the sequence of configurations in Figure 3. The
paths α1, α2, and α3 from (5.6)–(5.8) are contained in Amin and correspond to the sequence of rod
configurations in Figure 5.

sequence of stable equilibrium configurations, the robotic gripper holding the rod at
T = 1 should follow the path qs(1) for s ∈ [0, 1].

An example of this procedure is shown in Figures 3–5. Consider the problem of
manipulating the leftmost rod in Figure 3 into the rightmost rod in Figure 3. Both
of these rod configurations are local solutions of (7.1). The three-dimensional space
A is shown in Figure 4a, and the leftmost and rightmost rod configurations in Figure
3 correspond to the black circles in Figure 4a. These two points are connected by a
straight line, which we denote by α : [0, 1] → A. The sequence of rod configurations
in Figure 3 corresponds to moving along the path α.

The lower line in Figure 4b shows the first conjugate time at each point along the
path α in A. We see that at the endpoints of the path, the first conjugate time occurs
after the final time T = 1, verifying that the leftmost and rightmost rod configurations
in Figure 3 are local solutions of (7.1). In between the endpoints, conjugate times
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q1

q2

snapshots
along the path α1 ∪ α2 ∪ α3

Fig. 5. A sequence of configurations of a planar elastica corresponding to the paths α1, α2,
and α3 in Figure 4a. All of these configurations are local minima of (7.1) and are therefore stable
equilibrium configurations of the elastic rod. Note that the leftmost and rightmost configurations in
this figure are, respectively, identical to the leftmost and rightmost configurations in Figure 3.

occur before the final time T = 1. Therefore, the path α is not contained in Amin.
In fact, the intermediate rod configurations in Figure 3 do not locally minimize the
total cost in (7.1) and are therefore unstable equilibrium configurations.

Using the procedure described in Theorem 5.1, we can deform the path α into a
path in Amin. We see from Figure 4b that along α, the smallest conjugate time is
approximately 0.75. We can choose Lmin in Theorem 5.1 to be 0.7. The three paths
α1, α2, and α3, defined in (5.6)–(5.8), are shown in the space A in Figure 4a. The
dashed curves in Figure 4a show the paths α1 and α3 extended to the origin, i.e., the
dashed curves are α1(s) and α3(s) with s ∈ [0, Lmin].

The upper line in Figure 4b shows the first conjugate time along the curves α1,
α2, and α3 (where the length of the curve α1 ∪α2 ∪α3 has been normalized to 1). As
expected, the first conjugate time occurs after T = 1 along the entire path α1∪α2∪α3,
so this path is contained in Amin. Figure 5 shows a sequence of rod configurations
along this path in Amin, with the first three configurations corresponding to α1, the
next four corresponding to α2, and the final three configurations corresponding to α3.

8. Conclusion. We have derived a sufficient condition for the set of all local
optima of an optimal control problem over all possible terminal state constraints to
be path-connected. This condition relies on the assumption that the necessary and
sufficient conditions for optimality are scale-invariant. This scale invariance property
can easily be checked by showing that the Hamiltonian function provided by the
Pontryagin maximum principle satisfies the scaling property in Theorem 5.1. We also
showed that under a similar scaling condition on the cost function, the set of all local
optima with a total cost less than a given bound is path-connected.

We then applied these results to an optimal control problem whose local solutions
are stable equilibrium configurations of a planar elastic rod. We showed that the set of
all stable equilibrium configurations is path-connected, and we provided an example
of how to construct a path in this set. This procedure can be used to plan paths of
robotic grippers holding the ends of the rod that cause the rod to move between any
two stable equilibrium configurations.

Many extensions of the results in this paper could be explored in future work.
The conditions in Theorems 5.1 and 6.3 are sufficient, but not necessary for a path-
connected set of local optima. More complete characterizations of optimal control
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problems with path-connected sets of local optima, in terms of either less stringent
sufficient conditions or conditions that are both necessary and sufficient, would be
interesting. Depending upon the applications being considered, constraints other
than those analyzed in section 6 could be considered. For example, scale invariance is
used in [6] to show that the set of all Kirchhoff elastic rods (i.e., nonplanar elasticas)
that do not contain self-intersections is path-connected. This constraint corresponds
to an injectivity condition on q(t).

Another line of future work is to consider perturbations in elements of the optimal
control problem other than the terminal state constraint. If the optimal control
problem (3.1) is formulated in a geometric setting as an optimal control problem on a
Lie group, invariance of the optimal control problem with respect to the initial value
of the state q(0) can be related to invariance of the Hamiltonian function (3.4) under
the left-action of the Lie group [15]. Therefore, a geometric statement of Theorem 5.1
combined with a left-invariance assumption may be sufficient to show that the set of all
local optima over all possible initial and terminal state constraints is path-connected.

Finally, extensions of the application considered in section 7 could be investigated.
Conservative external forces, such as gravity, break the scale invariance property we
used to establish path-connectedness of the set of local optima. However, the set of
local optima may remain path-connected in the presence of these forces. The model
used in section 7, although geometrically nonlinear, assumes the rod behaves according
to linear elasticity. A cost function derived from nonlinear elasticity could be used
in (7.1) to more accurately model an elastic rod experiencing large deformations. If
this nonlinear elastic model could be shown to satisfy the scale invariance properties
discussed in this paper, we could prove that the set of local optima remains path-
connected under this more general model of elastic deformation.

Appendix A. Conjugate times in the optimal control problem (4.6). In
this appendix, we analyze the optimal control problem (4.3) with Fi(q) given by (4.6).
We show that if |a| > 2, then a ∈ Amin. This result, along with the fact that 0 �∈ Amin

(which was shown in section 4.2), shows that Amin is not path-connected.
Since the Hamiltonian function in Theorem 3.1 is conserved, we have

1

2
p(t)2 − cos(q(t)) =

1

2
p(0)2 − cos(q(0)) =

1

2
a2 − 1.

Since q̇(t) = p(t) and |a| > 2, this gives q̇(t)2 > 0 and

q̇(t, a) = sign(a)
√

a2 + 2 cos(q(t)) − 2.

Assume that a > 2. We then have

∂

∂t

(
∂q(t, a)

∂a

)
=

∂

∂a

(
∂q(t, a)

∂t

)

=
1√

a2 + 2 cos(q(t))− 2

(
a− sin(q(t))

∂q(t, a)

∂a

)

> 1− 1√
a2 − 4

∣∣∣∣∂q(t, a)∂a

∣∣∣∣ .
Let â = (a2 − 4)−1/2, and let y be the solution of

ẏ = 1− â|y|, y(0) = 0.
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Since ∂q(0, a)/∂a = 0, we have ∂q(t, a)/∂a ≥ y(t). The solution of this equation is

y(t) =
1

â

(
1− e−ât

)
,

which is positive for all t > 0. Therefore ∂q(t, a)/∂a > 0 for all t > 0. A similar
argument can be used for the case a < −2. Therefore a ∈ Amin if |a| > 2. We
conclude that Amin is not path-connected.
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