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Abstract—1In this paper, we consider the problem of an
autonomous robot searching for a target object whose position
is characterized by a prior probability distribution over the
workspace (the object prior). We consider the case of a
continuous search domain, and a robot equipped with a single
binary sensor whose ability to recognize the target object varies
probabilistically as a function of the distance from the robot to
the target (the sensor model). We show that when the object
prior and sensor model are taken from the exponential family of
distributions, the searcher’s posterior probability map for the
object location belongs to a finitely parameterizable class of
functions, admitting an exact representation of the searcher’s
evolving belief. Unfortunately, the cost of the representation
grows exponentially with the number of stages in the search. For
this reason, we develop an approximation scheme that exploits
regularized particle filtering methods. We present simulation
studies for several scenarios to demonstrate the effectiveness of
our approach using a simple, greedy search strategy.

I. INTRODUCTION

In this paper, we consider the problem of a robot trying
to localize an object in a continuous domain, using only
binary measurements (i.e., the object is either detected, or
not, at each stage of the search). This is an example of the
probabilistic search problem. We restrict our attention to the
case in which both the prior probability map for the object
location and the sensor model belong to the exponential
family of distributions. This assumption does not impose se-
vere limitations, since the exponential family contains many
typically used pdfs, e.g., the exponential and Gaussian pdfs,
and can be used to approximate many other distributions.
Due to the self-conjugacy properties of this family, we can
demonstrate that the searcher’s posterior probability density
function for the object location will belong to a finitely
parameterizable class of functions. For short-term searches,
this feature admits the possibility of maintaining an exact
representation of the searcher’s belief regarding the object
location. For long-term searches, it enables a computationally
effective solution based on regularized particle filters.

Search problems have been studied extensively in the lit-
erature [1]-[3], and several papers have addressed Bayesian
formulations and various strategies of search [4]-[6]. Many
of these approaches deal with discrete domains or estimation
methods, often using sampling methods or model reduction,
to represent the posterior of a target’s position. Such ap-
proaches lead to a discrete optimization over a discretized
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approximation of the search domain. In contrast, our method
preserves a continuous representation, while providing a
suitable structure for optimization.

A. Contributions

This paper is primarily concerned with identification of
a probabilistic search model that has an exact, finitely
parameterizable representation, and which readily yields a
continuous approximation of the object location pdf using
Bayesian inference. Thus, our primary contributions are:

1) We demonstrate that, using the self-conjugacy proper-
ties of the exponential family for a specific class of
sensor models and initial conditions, we can represent
the belief exactly using a finite representation.

2) We derive the filtering (or inference) equations that
model the posterior likelihood of object location con-
ditioned on robot motions and a sequence of noisy
binary measurements.

3) We develop a practical and effective approximation
approach based on a regularized particle filter.

4) We illustrate the feasibility of our model using a
simple gradient ascent strategy, which exploits our
preservation of gradient information.

5) We demonstrate our method for both single-agent and
multiple-agent search for a stationary target.

These filtering equations can be used as a basis for object
localization or other variants of search for these objectives.
We discuss possible target applications in Section IV.

B. Related Research

Probabilistic search is well-studied in the literature. Much
of the early work on search is rooted in operations research
[1], [7], and later techniques are based on this formaliza-
tion. Various search problems, surveyed in [2], [3], discuss
planning techniques for the one-sided search problem where
the target does not respond to the actions of the searcher,
multiple targets and sensor models, and target evasion games.
Similarly, the work in search-related problems spans a di-
verse list of topics such as exploration and mapping [8]
and coverage path planning [9]. Their unifying factor is
employing observations to improve planning trajectories in
an online fashion while integrating sensor data with the
problem-specific model. Such planning can be accomplished
by utilizing a probabilistic map to generate the optimal path
for maximizing object detection [10], acting as an extension
to classical motion planning methods.

Probabilistic approaches to search and coverage are dis-
cussed in [4]-[6], [11]. A Bayesian approach to search for

3975



an object that is either stationary or mobile (but not evading)
is conducted in [5]. The approach yields target beliefs in the
form of probability density functions; however, unlike the
previous work in [4] their practice numerically discretizes
these beliefs over the seach environment. Similar to [10], the
focus is placed on generating a search trajectory to maximize
the detection of the target.

In [6], [11], [12] search is modelled as a hypothesis test
given a search area. Similar to our work, Bayesian inference
equations are developed (though in a discrete environment)
for the case of a binary sensor, where false positives and
negatives are included, to determine the probability of target
detection. The discrete decomposition of the environment
allows the target area to be represented as a graph, which
in turn yields a representation of agent motion constraints.
Multiple search strategies are considered in [11] and are
compared by the expected time to reach a hypothesis. The
work in [6] furthers the hypothesis testing by analyzing the
necessary thresholds to determine a hypothesis and provides
closed form target belief update expressions for specific
cases.

C. Outline

In the next section, we develop the filtering (Bayesian
inference) equations based upon our problem model. These
equations demonstrate that we represent the exact condition
of our search problem with a finite representation and result
in straightforward evolution update rules. We then derive a
search strategy using the well-known greedy method, namely
gradient ascent over the posterior. For searches with many
stages, we obtain a continuous approximation using a reg-
ularized sampling importance resampling particle filter. We
then present both single and multi-agent searches employing
this strategy, as well as our choice of approximation. Finally,
we summarize our work and discuss future directions.

II. SEARCH MODEL

We consider the problem of modelling search for a sta-
tionary target located within a given workspace, V. The
prior information about the object is in the form of a finitely
parameterized probability density function over W, where
this prior belongs to the class of the exponential family of
distributions. Specifically the location of the object, denoted
x° € W, is a random vector distributed according to fzo.
Furthermore, the binary sensor model considered is also
a member of the exponential family class. Given these
conditions, we desire to represent the object distribution in
a finitely parameterizable representation through Bayesian
filtering. The discussion in this paper is limited to workspace
W equal to R! or R?, but the approach generalizes to RV,

In this section we first give the specifics of our problem
model. Using this model, we provide appropriate Bayesian
inference equations. By applying these equations to the prob-
lem model we explicitly show, through our initial conditions,
that this model leads to self-conjugacy under the operation of
the Bayesian filter. This provides a finitely parameterizable

representation of the object map, which is given specifically
in the form of update rules.

A. Problem Model

The search agent considered is a mobile robot with state
" € W and the following discretized, deterministic! kine-
matic motion model

Ty = Ty + U, lJuel| < @ (1)

trying to find an object with unknown (random) location,
where the quantity u; is a control input to the system. The
robot is equipped with a noisy binary sensor where the
observation at time ¢ is denoted y,, with the bold symbol
indicating a random object. The observation y, = 1, which
corresponds to object detection, becomes more probable
as the robot approaches the object. We assume that the
probability of object detection can be expressed by a sensor
model of the form

Py,fagae (Y = Lap,2%) = P ED=E0D )

where the sensor parameter 6 is a function of xj. Specif-
ically, the parameters in the exponential function represent
a probability distribution in the canonical form of the expo-
nential family class. That is, 6, is a vector containing the
natural parameters, T'(x) is the sufficient statistic, and F(0)
is the log normalizer [13], [14].

Here we note that the current framework can be easily
extended to employ multiple search agents. This extension
stems from the intuition that multiple agents share a common
belief of the object. As an agent independently makes an
observation at some time ¢, each observation is separately
used to generate a new, shared posterior. We demonstrate
the use of multiple agents in Section III-C.

B. Bayesian Inference

In this section, we derive the sequential inference equa-
tions using standard Bayesian development. Let the informa-
tion state be

— T
It - {$07fw°aul7"' yUt—1,Y1, " ayt}

where zj; is the initial robot position and f,. is the initial be-
lief of object location. As the robot’s motion is deterministic
(Equation 1) and its initial position is known, the distribution
we wish to model solely represents the state of the object.
Thus, for convenience we will define what we will refer to
as the object map

my(z°) == fzer, (z°|I})

which is the posterior pdf of the object location conditioned
on the information vector.

IFor this problem, it is reasonable to assume a deterministic motion
model, since uncertainty in robot motion will be insignificant compared
to the uncertainty in the observation process. When this is not the case,
POMDP models are more appropriate, but this adds significant complexity
to the problem, and in many cases the added complexity does not bring
significant performance gains.
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Before deriving the generic update law for the object
map, we note that the information vector can be equivalently
represented with the robot position rather than a set of
controls. Thus, let

7yt}

be a modified information vector, which is completely equiv-
alent to the canonical information vector.

We construct the Bayesian update equation for the object
map utilizing the usual Bayesian development.

my () := fgeir, (2°|1y)
= fwo‘ft (IO‘It)
= mo\yt,x{,ft_l (xo|ytvxzalt—1>

These steps are performed solely by manipulating equivalent
representations of identical sets of events. Applying Bayes
rule, we find

T o r o_r r
It_{fwovz()wrla'“ sy Ly Y1,

my(z) =

- o . T ~ ol T
pyt|mo’l’fa1t—1 (yt‘ft ’It’It—l) fm°|mf,1t71 (I |ItaIt—1)

- r T
Py, lag, I (ytm’lt—l)

From (2) we know that y, is conditionally independent of
I,_ when conditioned on z° and zy. Furthermore, we know
that the robot’s current position (before taking a measurement
at that position) does not affect our belief of object location.
Thus, we can simplify our update rule to

( o Py, |z zT (yt\xo,x{)fmo‘fkl (330|I~t71)
M\ T =

~ r T
pyt‘$1"1t71 (yt|‘rt y Itfl)

The inverse of the denominator in this equation is the
standard normalization constant 7);, which can be computed
using the total law of probability (conditioning on x°). Also
note that the second term of the numerator is exactly our
definition of the object map, so by definition

m(2%) = M Py, |2 2r (el 1) my—1(2%)  (3)

with

N ‘= |:/pytw°,xf (yt|£L‘O,£L';) mt—1<mo)dxo

Thus, we have generated a generic update law for this model
of search. In the next section, we show that weighted sums
of distributions from an exponential family are self-conjugate
under this update law. Furthermore, we explicitly provide the
update rules for each sensor observation case.

-1

C. Update Law for an Exponential Family

In this section we give an outline of our derivation, fully
presented in Appendix I, using the generic Bayesian update
law that allows an exact, finite parameterization of the object
map belonging to the exponential family class of distri-
butions. Furthermore, our derivation yields straightforward
update rules to model the evolution of the object map. This

is done inductively by using the well known self-conjugacy
property [15] of the exponential family with an atypical
mixture model [16], i.e., each mixture component’s weight
is not constrained to the set of positive reals. We define the
form of the atypical mixture as

my—1(2°) ==Y wviexp (0, T(%)) = F(6;)] &)

i=1

for the stage ¢t — 1, where v; is the i component’s non-
standard weight.

Substituting the sensor model (Equation 2) and the
non-standard mixture model (Equation 4) into the generic
Bayesian update law (Equation 3) yields

mi(2°) = neexp [(0s, T(x%)) — F(0s)] mi—1(2°)

at time ¢. Considering the case of a positive sensor observa-
tion, i.e. y; = 1, results in the update law

mi(a%) = > vl exp (07, T(2°)) = F(6;1)] (5
i=1

where the “+” superscript denotes positive update parame-
ters. Likewise, the update law for a negative sensor observa-
tion (y; = 0) yields

my(a?) = 3 v el TE=FOD

i=1

n
+ ZU;e<9Z7T(w°)>—F(9f) (6)
i=1
where the “-” superscript denotes a component with a neg-
ative weighting coefficient.

From our derivation, we present the resulting update rules
in the following propositions.

Proposition 1: For an observation of y; = 1, given the
parameters (v;, 0;) for m;_1(x°) and 6, the parameters for
my(x°) are
+ _

v = ;e 0 =0, + 0,
where

o :F(ez-i-gs) —F(HZ-) —F(HS) @)

The interpretation of Proposition 1 is that positive observa-
tions result in support of the previous object map that is
close to the robot position being scaled up, meaning that the
sensor reading is likely if the object is close. The support
further from the robot will thus be scaled down.

Proposition 2: For an observation of y, = 0, given the
parameters (v;, 0;) for m;_1(x°) and 6, the parameters for
my(z°) are

vj' = v; 9;‘ =0,
v, = —nevie™ 07 =6, +0;
where «; is computed as previously defined in Equation 7.
Essentially, in this case the number of components in
the mixture will double. Each component of the original
mixture will produce a scaled copy of itself (represented
by parameters v;r, 01-*) and a component whose coefficient
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has opposite sign (represented by parameters v; and 0, ).
Such growth reveals the necessity of the atypical mixture
model representation for the object map. Fig. 1 illustrates
this behavior, with an initial object map comprised of only
positive components, for YW = R1.

The rules given by both propositions provide an intuitive
manner for updating the object map given the current sensor
measurement, the object map, and the sensor parameter 6.
This implementation is described in Algorithm 1 for a single
time-step. Here we see that it is sufficient to separate positive
and negative components for bookkeeping, since the object
map at each time-step may contain both types of components.

Algorithm 1 Object Map Update for a Single Time Stage
0i)}ie

where «; is given by (7)

IHPUt: Yt esvmt—l = {(via

\—1
ny = (Z?:l Uiea%)

if y, = 1 then
for each (v;,6;) € my_1 do
9;” =0;+0,
;= F(Qj) — F(6;) — F(0y)
v;r = M
me =me U{(v;,0;")}
end for
else

ny = 1 — n, (take the complement)
for each (v;,0;) € my—1 do

H;F =0,
U;r = TtVs
0, =0;+0,
o, = F(0;)— F(6,) — F(6,)
v, = —1v;e
mtzth{( Ui 701+7 ;79;)}
end for
end if

Output: m;

III. PROBABILISTIC SEARCH

A. Search Strategy

Given a continuous representation of the object map at
time ¢, a greedy search strategy follows the direction of the
object map’s positive gradient. That is, the desired robot state
Iy, at time £ + 1 is

Ty = xp +7 Vmy(z?) ®)

for a sufficiently small step-size . The robot’s control input
uy is simply the difference of Z,; and the robot’s current
position, such that the control input satisfies the constraint
given in Equation 1. Our exact representation produces a
direct means for computing the gradient of the object map.
By assuming that the object map at time ¢ consists of both
positive and negative components, the gradient of Equation 6

yields

th

Zerv( (03, T(x°))— F(@ﬂ)
+Zv V(

which holds by the linearity of the gradient operator.

Additionally, we explicitly show the gradient of an atypical
mixture of Gaussians specifically for WW = R2. Once this
mixture is obtained from the modified update rules, presented
in Appendix II, the object map’s form is

=Y N, S+ o N, Z7) (10)
=1 =1

T (a0) - (9;>) 9)

where a component’s mean f; is a two-dimensional column
vector and X; is a two-dimensional covariance matrix. We
obtain the gradient of the Gaussian mixture (Equation 10),
which is

)+ 0 VN (i, )

i=1

(1D
Furthermore, the gradient of a Gaussian component is given
as a two-dimensional column vector where it is evaluated
at the current position of the robot at time ¢ (where the
time subscript has been temporarily replaced by the vector
element). Thus, the gradient of the object map is the sum of
partial derivatives

= [N AN & TaN aNTT

V) =30 |G o]+ 207 (G )
i=1 i=1

(12)

The partials of these components take a more direct form

arising from the structure of the object map component

covariance matrices. One such condition is that the object

map is comprised of circular Gaussian components, each

with a covariance matrix of the form

Vmy(z ZU+VN TR

Yi=o0l-1 (13)

where o2 is the variance and I denotes the two-dimensional
identity matrix. Therefore, a positive component partial is of
the form

o [ ] IR, [ )

where this component acts as an attractor, pulling the robot
toward its mean, proportional to its squared variance. The
partial of a negative component is of the same form, but
has the opposite effect due to its negative weight. Thus, the
computed component gradients above can be substituted into
Equation 8 to produce the control input.

When employing gradient ascent it is imperative that care
be taken for the existence of local maxima. It is possible that
the robot will reach a steady-state at some zj, following the
presented gradient ascent strategy, given successive positive
detections and will not find the object. To overcome this
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Exact evolution of m(z°) for a one-dimensional problem. For this series only negative detections were observed. The large red star, at the tip of

the red impulse, denotes the robot’s current position (the smaller stars are the previous positions), and the object’s position is given by the blue square.

drawback a method used in gradient following problems will
be employed, namely a random walk. Such a method can
also be used to escape a region where mixture components
equally “pull” or “push” the robot, rendering the robot
stationary.

B. Approximation with a Regularized Particle Filter

Although we demonstrate that the object map can be
represented with a finite representation, the representation
size is not fixed. Though the number of natural parameters
0; of each distribution will not increase, we may require
parameters for up to N2! components at stage ¢, where
N is the number of components present in mg. This ex-
ponential growth of the representation may cause serious
computational issues where a large number of search stages
are needed. However, as the representation and its evolving
form is known, we can easily produce a model approximation
with a regularized particle filter.

The use of a regularized sampling importance resampling
(SIR) particle filter [8], [17], [18] allows us to maintain
a continuous representation of object location, given our
knowledge of the evolving object map form. Such a filter
provides a continuous approximation through the careful
choice of a regularization kernel. Since the object map’s
parameterization remains in the exponential family class we
can readily choose an appropriate regularization kernel, but
such a choice is also dependent on the initial map form. That
is, given an initial map consisting of a specific density (or
mixture), it is intuitive to use this density as the kernel due
to our knowledge of the evolving map’s form.

A regularized SIR particle filter process closely resembles
the standard SIR filter. First, N samples are drawn from
my resulting in N particles (2%, w®) with a state and asso-
ciated weight. The weights of each particle are updated by
computing the probability of detection (Equation 2), given
the appropriate sensor observation y;. However, rather than
resampling from a discrete density (typically the Dirac delta),
samples are drawn from the kernel distribution. This yields
the approximation in the form

N
M1 (z°) = Z w; K(z;;2°)
i=1
where K is the regularization kernel with N particles.

For the results presented in Section III-C, we employ the
regularized SIR particle filter to approximate the object map,

which is given as a mixture of Gaussians. An obvious choice
for our regularization kernel is a Gaussian distribution, where
the map approximation

N
M1 (2°) = Zwlj\/(x“ ¥ 2°)
i=1

is simply a mixture of Gaussians, each with a covariance ma-
trix X. Though there exist principled methods for selecting
3, we choose this parameter experimentally. Note that this
continuous, finite approximation of our object map is still in
exponential family form, though solely comprised of positive
mixture components. Thus, our general update rules are still
applicable for the evolution of the object map. Furthermore,
the gradient ascent strategy is still valid, though only positive
components are present.

C. Simulations

We present both single and multi-agent search simulations
for YW = R? using the regularized SIR particle filter and
the gradient ascent search strategy. An object is considered
“found” if it lies within a radius of one-half the gradient
ascent step size (0.1) from the agent. The initial object map
is given as a mixture of circular Gaussians (subfigure 2a).
The equipped binary sensor’s covariance matrix, for each
agent, is X3 = 0.4 - I. The number of particles used for the
regularized filter is N = 600 and our regularization kernel
is a Gaussian distribution.

For the initial map 400 trials were conducted, each using
the same initial robot state, sensor variance, and the true
object position. For these 400 trials the average time to
find the object, with a single agent, was ~ 1193 time-steps.
However, if the object’s position was exactly known, for this
scenario, the robot would need no more than 16 time-steps to
reach it. This disparity illustrates the amount of uncertainty
of searching solely with a binary sensor. Fig. 2 shows a trial
where the object was found in 57 time-steps.

For the multi-agent simulations, 400 trials were again per-
formed in the manner similar to the single-agent results. That
is, each agent is separately governed by the gradient ascent
strategy and must individually invoke a random walk when
necessary. Furthermore, given the object map m;_1(x°),
each agent’s current position, and the set of observations
Y, where

Yt:{y%?y?7 7y;5N}
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Evolution of m(xo) for a two-dimensional problem employing the regularized particle filter. The robot (black star) follows a gradient ascent

strategy dictated by the object’s (black square) likelihood. Negative observations are made until ¢ = 24, which scales the object likelihood close to the
robot. Successive positive detections further scales this as the robot follows the gradient ascent strategy.

for N agents, the object map m.(z°) is generated by the
given update laws. The average time using N = 10 agents
was ~ 89 time-steps. This result is intuitive, as multiple
agents provide much more information in the workspace,
which is reflected in the evolution of their shared object
map. Furthermore, this increased effectiveness illustrates the
viability of employing multiple agents, equipped with binary
sensors, though following a sub-optimal strategy.

IV. DISCUSSION
A. Summary

Using the self-conjugacy properties of the exponential
family we demonstrated that, for a specific class of sensor
models and initial conditions, we can represent the object
pdf exactly using a finite representation. We derived the
filtering (or inference) equations that model the posterior
likelihood of object location conditioned on robot motion
and a sequence of noisy binary measurements. Due to the
possibility of exponential growth of mixture components,
regularized particle filtering was employed for both single-
agent and multi-agent models requiring a large number of
stages. A number of target applications forms the basis for
future exploration of this approach.

B. Future Work

As the viability of our Bayesian search model has been
ascertained, there are various relevant extensions of this
work. The non-stationary single target search can be applied
to a moving target, which is simply the search-and-track
problem. Logically, the non-stationary problem is readily
extensible towards the search for multiple targets. Affirming
that all targets are independent of each other allows their
belief representation to be partitioned into separate pdfs,
allowing the possibility for planning search trajectories.
Furthermore, both the stationary and non-stationary problems
can be modelled as a POMDP, which provides an amenable
structure for optimization of the search problem.

A probabilistic localization problem entails using (solely)
a binary sensor determine the location of an object. If the
observation model is probabilistic, the object cannot be
perfectly localized in finite time. Thus, the criterion to be
minimized would be expected entropy of the object map.
With a POMDP formulation, the policy optimization would

be performed over the subset of belief-feedback policies that
guarantee consistent estimation.

One advantage of using mixtures of distributions from
an exponential family is that many good approximation
techniques exist. For example, algorithms for soft [19] and
hard [20] clustering based on Bregman divergences can
significantly reduce the number of components required in
the representation, while causing only a small perturbation
(with respect to relative entropy) between the true and
approximated distribution. Mixtures from the process model
described in this paper tend to be good candidates for
approximation using these methods, because the different
components tend to naturally form clusters. This is due
to the incremental updating of the map and robot position
(Fig. 1). Experimental experience tends to indicate this is not
an exceptional case.

APPENDIX I
DERIVATION OF UPDATE RULES

Here we explicitly derive the update rules, stemming
from the general Bayesian inference for our model, that
parameterizes the evolution of the posterior. This is accom-
plished by assuming both the initial distribution describing
the object’s location and the sensor model belong to the class
of the exponential family of distributions. Furthermore, our
derivation results in explicit update rules for the two possible
sensor measurements.

First, we give the initial prior as a standard mixture of ex-
ponential family distributions to represent the probable object
locations over W, represented as the convex combination

mo(2°) =Y wiexp [(0;, T(z°)) — F(6;)]  (14)

i=1
where ZZL w; = 1 and w; > 0 for all i. However,
we demonstrate the derivation inductively by defining an
atypical mixture with non-standard weighting coefficients v;,

mo(x°) = Z viexp [(0;, T(x°))y — F(6;)]  (15)

where Zf v; = 1 but v; € R, i.e., not constrained to the set
of positive reals, and m;(z°) > 0 for all z° € W. Essentially,
this is a mixture of “positive” components summed with
“negative” components. We denote the weighting coefficients
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of the components of the mixture with v; to emphasize that
this mixture is not the usual convex sum of component distri-
butions. Furthermore, note that any distribution of the form
of Equation 14 can be written in the form of Equation 15
without modification, so the initial condition of the induction
is shown.

Our derivation continues by demonstrating the inductive
step first for the case of y; = 1. Substituting the sensor
model

Dy e (U = 1o, 27) = 0T =F 0

into the generic Bayesian update law

mi(2°) = Nt Py, o2y (2%, 1) me—1(2) (16)

yields
my(x%) = e exp [(0s, T(x%)) — F(0s)] mi—1(2?)

Using the inductive hypothesis, by assuming m;_; is of the
form of Equation 15, allows the following where

my(z°) = 1, 0= T@N=F0:) Zviewin(zf’»fF(ai)
=1
n
=N Zvie<9i+9~<’T(r°)>—F(Gi)—F(es)
=1
=1, Zviem (05405, T ()= F (6:405)
=1
such that o; = F(0; + 0,) — F(6;) — F(6). Rather than
computing 7; with

-1
Nt = |:/pyta:°,${ (yt|$0717§) mt—1($o)d$0]

it is computed based on its normalizing property alone, i.e.

n

- —1
/ Z 'Uieai e<9L+9‘57T(ID)>F(0L+95)dx0‘|

i=1

- n _1
_ Z vie(” / 6(9,i+95,T(x"))—F(913+0,<)dxo‘|
=1

- n 71
= E v;e™t
Li=1

The final step is performed by noting that each component is
a probability distribution; they each integrate to one. Thus,
the object map at time ¢ can be parameterized as

m =

a7

my(z°) = > vfexp [(0], T (2°)) — F(6;)] (18)
i=1

with the corresponding parameter update

+ _ o
v = mvet

0 = 0; + 0,

19)
(20)

The superscript ‘4’ indicates the component in the stage
t object map has a positive weighting coefficient. Hence,
the parameters (v;", 0;) are generated (through the Bayesian

IR

filtering equation) by the component in the stage ¢t — 1
object map, with parameters (v;, 0;), given an observation of
y¢ = 1. This satisfies the first case of our derivation, because
Equation 18 is in canonical exponential family form.

The second case of y, = 0 is considered with the same
inductive reasoning presented above. Substituting the sensor
model complement into Equation 16 yields

mu(a®) =y (1= @ TENFON) n (20)

Utilizing the inductive hypothesis and using the same steps
as the previous case, manipulating

n

My (Io) = Utmtfl(fo) — M Z vieaie<0"+95’T($0)>7F(9"'+05)
i=1
results in the parameterization

my(z°) = Zv?e<9j*T(zo)>—F(9f)

i=1
+ vae(af,T(x"»—F(W)
i=1
Finally, the parameter update for this step is

v = nv; 1)
o =0, (22)
v; = —pvie™ (23)
07 = 6; + 0, (24)

The normalization constant 7, can be computed by simply
taking the complement of Equation 17. The superscript
‘4’ retains the meaning as before, and the superscript ‘—’
similarly indicates a component with a negative weighting
coefficient. For the case of either observation, the property
m¢(2°) > 0 holds as a consequence of Bayes Theorem.
Thus, as the second observation case holds through the in-
duction step, we are able to represent m; with a finite number
of parameters in exponential family form and provide explicit
update rules for both observations.

APPENDIX II
FILTERING WITH GAUSSIAN MIXTURES

This appendix demonstrates our method using the ex-
ponential family representation for mixture of Gaussian
distributions. First, we illustrate the binary sensor model. We
then present the update rules specifically for a mixture of
Gaussians, using the derivations presented in Appendix I.

The binary sensor model for the case of W = R! is
parameterized as

Py, |z}, xe (yt = 1|x:axo) = H'N(xzvzs)

which can be expressed in the exponential family form with

7\2
F(8,) = (;”;)2 + 3 In(2mo?)
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The importance of « is given for the univariate case. If the
sensor’s standard deviation, o, is chosen such that

s < m
then the sensor model is not a valid pdf (does not integrate
to one over W). Thus & is used to enforce this necessary
condition.

The sensor model for W = R? is simply a bivariate
Gaussian parameterized in exponential family form. This
form can be seen in our filtering equations for an initial
object map composed of Gaussian components. Likewise,
the reader may consult [13], [14] for further information on
the exponential family of distributions.

Here, we show our derived update rules given an object
map comprised of Gaussian components. That is, the object
map is of the form

mt_1($o) = Zvi N(,u’ia EZ)
=1

at time ¢ — 1. Given this multi-variate mixture of Gaussians,
a component’s mean vector j; and covariance matrix Y; can
be represented by the natural parameters 6; and sufficient
statistic T'(x°) in exponential family form with

1 T
0; = [N, ;)T = {Zilﬂia 2§3i1] (25)
T(xo> _ [xo’ 7$o(xo)T}T

The log normalizer can be expressed in terms of the natural
parameters of the distribution.

1 1 1
F(6;) = ZTrace(\IJ;IAiAZ-T) —5 In(det(¥;)) + 3 In(m)

One the initial distribution is “converted” from a mixture
of Gaussians to a representation in the exponential family
form, we can explicitly use our update rules to respond to
the appropriate observation.

We can, of course, convert the mixture of exponentials
representation back to a mixture of Gaussians representation
using the mapping from natural parameters to mean and
covariance.

1
= 5A*I\I/ (26)
Y= %qu 27)

Using this mapping, we see that our update rule (in terms of
mean and covariance) for y; = 0 is

v = v; = —n kvie
pf=p op = (ST DT T s+ 5 )
r=% Iy=Eterh)T

This can be shown by substituting (25) and (26)-(27) into
(21)-(24). Substituting (25) and (26)-(27) into (19)-(20) will
give the corresponding rule for y, = 1.
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