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Abstract

This paper derives both open-loop and closed-loop control policies that steer a finite set of differential-drive robots to

desired positions in a two-dimensional workspace, when all robots receive the same control inputs but each robot turns at

a slightly different rate. In the absence of perturbation, the open-loop policy achieves zero error in finite time. In the pres-

ence of perturbation, the closed-loop policy is globally asymptotically stabilizing with state feedback. Both policies were

validated with hardware experiments using up to 15 robots. These experimental results suggest that similar policies might

be applied to control micro- and nanoscale robotic systems, which are often subject to similar constraints.
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1. Introduction

There are many breakthrough applications for micro- and

nanorobotics, across a broad set of fields. Large popula-

tions (102–108) of micromanipulators could allow targeted

drug delivery, enable surgeons to operate at the cellular

level, let engineers develop more complex microelectrome-

chanical system (MEMS) assemblies, and let biologists

simultaneously sort all the cells on a Petri dish. These

classes of tasks require ensemble manipulation—the use of

a large population of small robots to form a coordinated,

distributed manipulator.

Ideally, we would design a system that would allow each

robot to be controlled individually. However, next-

generation micro- and nanorobotic systems are likely to

have very minimal on-board processing and communica-

tions bandwidth. The lack of significant on-board computa-

tion makes autonomous operation infeasible. Sending

individual control signals to each robot requires communi-

cations bandwidth that scales with population sizes.

However, these systems are only useful when their popula-

tions are immense, making the bandwidth for individual

unit control impractical. A practical solution is to control

the entire population with a single, shared, global signal.

This implies that all of the robots in the system receive the

same control inputs, yet these robots must accomplish dif-

ferent tasks. The solution requires ensemble control—the

use of a single global control input to direct all of the

robots in the population to unique poses.

This paper presents our results on controlling nonholo-

nomic unicycles with uniform inputs:

1. A finite-step open-loop control policy that sends each

robot to (a) arbitrary Cartesian positions or (b) range

and bearing locations relative to targets in R
2 (Section

3.4).

2. Globally asymptotically stabilizing feedback control

policy on the position of each robot (Section 4.1).

3. An online calibration procedure to learn model para-

meters (Section 4.4.3).

4. Hardware validations of all control policies (Sections

3.5.2, 4.4.4) with up to n = 15 robots that were 0.1 m

in diameter.

Taken together, this work is an initial step towards prac-

tical control for large populations of robots. In the next sec-

tion we describe the advances in miniature robotics that
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make control of large robot populations necessary, and the

advances in ensemble control that we have applied to this

problem.

1.1. Micro and nano multi-robot systems

Micro- and nanorobots can be produced in extremely large

quantities. Once a manufacturing process is developed, the

marginal cost of producing one additional robot is small.

Microrobots can be fabricated using MEMS techniques,

e.g. scratch-drive micro robots (Donald et al., 2006, 2008,

2013). These robots are 60 by 250 mm in size, and can be

mass-produced with many robots tiled on a single silicon

wafer. Perhaps the best examples of large populations are

robotic nanocars—synthetic molecules with integrated

axles, rolling wheels, and light-driven molecular motors,

that are 1.4 3 1.7 nm in size. These are routinely pro-

duced in tremendous quantities—a batch the size of an

aspirin tablet contained ’ 4 3 1019 nanocars (Shirai et

al., 2005; Chiang et al., 2011). This dwarfs the total num-

ber of birds on the planet earth—some 3 3 1011 (Gaston

and Blackburn, 1997). Populations of this size approach a

continuum of robots. Controlling such a massive popula-

tion highlights the need for novel approaches for ensemble

control, but even populations in the hundreds will not have

the processing or bandwidth for individual control.

Instead, this paper focuses on systems with uniform con-

trol inputs, specifically those that can be modeled as nonho-

lonomic unicycles. Uniform control inputs are common to

a variety of biological and artificial robotic systems. Some

representative systems are shown in Figure 1: light-driven

nanocars are uniformly actuated by a certain wavelength of

light, scratch-drive microrobots are uniformly actuated by

varying the electric potential across a substrate, multi-robot

systems are uniformly controlled by a broadcast radio sig-

nal. Other uniform input examples include the magnetic

resonant microrobots of Tung et al. (2012); the magnetic

helical swimming micro- and nanorobots of Ghosh and

Fischer (2009), Schürle et al. (2012), and Tottori et al.

(2012); the magnetic microparticles of Floyd et al. (2011)

and Diller et al. (2012, 2013); the magnetic milli-scale cap-

sules of Vartholomeos et al. (2012); and the tumbling mag-

netic microrobots of Jing et al. (2013) Biological examples

include the electric-field controlled paramecium studied by

Hasegawa et al. (2008), galvanotactic the electrokinetic and

optically controlled bacteria demonstrated by Steager et al.

(2011), the magnetic-field controlled bacteria demonstrated

by De Lanauze et al. (2013) and magnetic-field steered pro-

tozoa demonstrated by Ou et al. (2013). The hardware

implementations in this paper use a standard robot platform

with the same control inputs simultaneously broadcast wire-

lessly to all robots (McLurkin et al., 2010).

1.2. Ensemble control

We limit our work to robots with a differential-drive design,

and model their motion as nonholonomic unicycles. If a

system of identical robots of this type receives the exact

same control inputs, their individual positions are not con-

trollable. The path followed by each robot will be a rigid-

body transformation of the path followed by every other

robot. In practice, however, each robot is slightly different,

and this inhomogeneity can be exploited in a systematic

way to recover controllability. Inhomogeneities can be

found in the systems of Figure 1 and in other micro- and

nanoscale robotic systems. For example, small imperfec-

tions in their scratch-drive actuators lead to speed variations

between different scratch-drive microrobots. We exploit

Longest
axis (m) 10–910–610–3100

Fig. 1. Robotic systems with uniform inputs at decreasing length scales. (Top) Six differential-drive robots (Becker et al., 2012), three

scratch-drive microrobots (Donald et al., 2008), three light-driven nanocars (Chiang et al., 2011). (Bottom) Swarm of r-one robots

(Becker and McLurkin, 2013), photophile kilobot robots (Becker et al., 2013a), and magnetically steered protozoa (Becker et al.,

2013b).
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these differences to develop two controllers: a feed-forward

open loop controller suitable if properties of the differences

are known a priori, and a feedback controller that uses pose

estimates to recover these differences and produce stable

control. Though both controllers can exploit random inho-

mogeneity, we explain that robots with uniform inputs

should be designed to have large rotational, but small trans-

lational process noise.

Previously, we derived an open-loop approximate steer-

ing algorithm for one nonholonomic unicycle insensitive to

model perturbation, e.g. variations in wheel size, that scales

both the forward speed and turning rate by an unknown but

bounded constant (Becker and Bretl, 2012b). Our solution

constructed an infinite, fictitious collection of robots para-

meterized by the unknown constant, and our control algo-

rithm steered this entire collection to a goal position.

Following the terminology introduced by Brockett and

Khaneja (1999), Khaneja (2000), Li and Khaneja (2009),

and Li (2011), we called this fictitious collection of uni-

cycles an ensemble and called our approach to steering

ensemble control. The idea was that if the same control

inputs steered the entire ensemble from start to goal, then

surely they would steer the particular robot of interest from

start to goal, regardless of its wheel size.

Our new controllers take advantage of this idea in a

slightly different way. Rather than trying to mitigate the

effects of bounded model perturbation, we instead try to

exaggerate these effects. We will show that if each robot

has a different wheel size, we can construct open-loop con-

trol policies to drive the robots to desired position or range-

and-bearing goal states. Moreover, with state feedback we

can derive a globally asymptotically stabilizing control pol-

icy that steers the position of all robots (independently)

between given start and goal configurations, despite the

fact that they all receive the same control inputs.

Ensemble control has recently been applied to a variety

of robotics problems, enabling feed-forward control of pla-

nar robot arms subject to parameter variation (Plooij et al.,

2013), simultaneous open-loop control of multiple ball-

bearings with unique radii using a plate-ball manipulator

(Becker and Bretl, 2012a), and methods for reducing

parametric sensitivity applied to feed-forward trajectory

tracking by robotic vehicles (Ansari and Murphey, 2013).

This paper focuses on controlling a finite set of robots and

provides both an exact open-loop controller, and an asymp-

totic feedback controller.

1.3. Open-loop control

For a system of n robots modeled as nonholonomic unicycles

there are 3n degrees of freedom: the x, y positions and global

headings u. If the robots have unique turning rates, we pro-

vide a finite-time open-loop algorithm to control 2n+ 1

degrees of freedom (DOF). This limitation does not exclude

many useful applications, such as navigation, manipulation,

or assembly. In this paper we present two useful ways to allo-

cate these 2n+ 1 DOF:

1. 2n unique (xi, yi) positions for each robot. The final

DOF is the integrated turning commands and modifies

the ui values, the robot headings in the global refer-

ence frame. This behavior is illustrated in Figure 2.

2. 2n unique (di, ai) range and bearing to targets for each

robot. The final DOF is the integrated turning com-

mands and modifies the ci values, the bearings from

the target to the robots. We focus on this second beha-

vior, which is illustrated in Figures 3 and 4.

Heading control is necessary for many robotic tasks,

including:

1. receiving an object (fertilizing embryos (Shin et al.,

2013), polar-body biopsy, microinjection);

2. redirecting an incoming signal (solar incinerator

mirrors);

3. observing an object (collecting, measuring, cameras);

4. emitting an object (ballistics, targeted drug therapy);

5. manipulating objects (pushing, grasping).

On the nanoscale, heading control is no less necessary.

Possible applications include using molecular robots as

nanoscale transporters, to break chemical bonds, or to build

t = 0 min t = 60 min

Fig. 2. n differential-drive robots that receive exactly the same input commands can be steered by our algorithms from any initial

position to any desired set of ending positions if robots turn at different rates. Shown are 12 r-one robots moving from a rectangle to

an ‘R’ shape. See Extension 1 for a video of this experiment.
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structures by constructing non-covalent bonds. We derive

inspiration from the molecular actuators of Minett et al.

(2002), the molecular elevators of Badjić et al. (2004), and

the nanocars of Vives et al. (2009).

1.4. Closed-loop control

Open-loop control is rarely satisfactory due to model and

process noise. Even with exact knowledge of the para-

meters of each robot, errors due to unmodeled dynamics

will integrate over time to ruin the final global configura-

tion. This is particularly troubling for smaller robots, where

disturbances from Brownian motion dominate other noise

sources (Einstein, 1956). By using a closed-loop feedback

policy we can guarantee global asymptotic convergence of

the ensemble to any given position. We note that, for single

robots, it is possible to build a robust feedback controller

that regulates position and orientation (Lucibello and

Oriolo, 2001). It is not obvious that the same can be done

for an infinite collection of robots. Instead, we focus on

regulating the position of every robot in the ensemble, and

present simulation results with populations ranging from

120 to 2000. We also present hardware experiments on

populations of up to 15 robots.

1.5. Overview

Our paper is organized as follows. We begin in Section 2

with a description of our problem. In Section 3 we design

and evaluate an open-loop controller that assigns 2n+ 1

DOF for a n robot system. Section 4 derives a globally

asymptotically stable controller. We conclude in Section 5.

Note that preliminary conference versions of Sections 3

and 4 have appeared (Becker et al., 2012; Becker and

McLurkin, 2013).

2. Modeling an ensemble of unicycle robots

Consider a collection of n unicycles that each roll without

slipping. Following the terminology of Brockett and

Khaneja (1999), Khaneja (2000), and Li and Khaneja

(2009), we call this collection an ensemble and describe the

configuration of the ith robot by qi = [xi, yi, ui]
T and its

configuration space by Q=R
2 3S

1. The global control

1 1 2

2

1

1

t = 0

1 2

1

t = T1

–1

–1

–2

–1

–1

–2

1 2

1

t = T2⇒⇒
Fig. 3. n robots, under the constraint that each robot receives exactly the same control inputs, can be controlled from any initial

configuration to the perimeter of a star-shaped set as long as each robot has a unique turning rate. The controller has 2n + 1 degrees of

freedom, which can be used to alter the spacing around the perimeter (middle and right). See Section 3 for details.

d = .3, α = 0 d = .2, α = π/ 2 d = .25, α = π d = {.1, .05}, α = {0, π } d = {.3, .1}, α = 0

Fig. 4. Differential-drive robots with top-mounted lasers demonstrating our control technique. The robots receive exactly the same

control commands, but each robot has a unique turning rate. By selecting different distances d and bearings a = {0, p/2, p}, these

robots engage, form a perimeter, or protect the target. These parameters can be mixed and applied to multiple targets, or to form

concentric rings.
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inputs are the forward speed u 2 R and turning rate v 2 R.

We assume that each robot has a nonzero parameter yi that

scales the linear velocity and a unique nonzero parameter

ei that scales the turning rate ( eij j 6¼ ej

�� ��8i, j). These yi, ei

values may arise from stochastic processes during manu-

facturing (Donald et al., 2006), or as design decisions

(Peyer et al., 2013). The kinematics of the unicycle are

given by

_qi(t)= yiu(t)
cos ui

sin ui

0

2
4

3
5+ eiv(t)

0

0

1

2
4
3
5 ð1Þ

If yi is zero the robot cannot move. Similarly, ei = 0 pre-

vents the robot from turning. On a collection of differential-

drive robots, these parameters can be mapped to unique

wheel sizes and ei = yi.

2.1. Conversion to discrete-time

We model our robotic system with a discrete-time model.

We can simplify (1) by splitting each DT time step into two

stages with piecewise constant inputs. During the first stage

of round k we command the robots to turn in place f, and

during the second stage command the linear movement

u(k).

k =
t

DT

j k

½u(t),v(t)�=
0,

2

DT
f

� �
t � kDT\

DT

2

2

DT
u(k), 0

� �
else

8>>><
>>>:

ð2Þ

Because the robots are either turning in place or moving

in a straight line, we can precompute the heading angles

and write the kinematics in the following simple form

xi(k + 1)
yi(k + 1)

� �
=

xi(k)
yi(k)

� �
+

yi cos ui(0)+ eikfð Þ
yi sin ui(0)+ eikfð Þ

� �
u(k) ð3Þ

for i = 1, 2, . , n and k 2 Z. Equation (3) is a discrete-

time linear time-varying system. As DT ! 0, the discrete-

time ensemble (3) approaches the continuous-time model

(1). Note that, alternatively, u could be constant and f(k)

the independent variable, but the resulting system would be

nonlinear. This linear formation (3) converts the motion

planning problem for n robots with uniform inputs into a

matrix inversion, as shown in the following section.

3. Open-loop ensemble control

We present two variants of open-loop control: position con-

trol and range-and-bearing control. Figure 2 shows the out-

put of position control. Note that the robots reach desired

final positions, but end with seemingly random headings.

This reflects the 2n+ 1 controllable degrees of freedom:

the final positions are controllable, but the final headings

are linked. Figure 3 shows range-and-bearing control. Note

that the robots reach desired range and bearings, but their

ending positions are distributed along the perimeter. This

also reflects the 2n+ 1 controllable degrees of freedom: n

arbitrary range and bearings are controllable, but the final

spacings are linked.

3.1. Position control

To prove (3) is controllable by (2), we will show the system

is uniformly k-step controllable. This means that the

reachable set after k rounds is the entire state-space (Levine,

1996, Chapter 25.3). We define the state as the robot posi-

tion pi = [xi, yi]
T, and write (3) in standard notation as

pi(k + 1)=Ai(k)pi(k)+Bi(k)u(k) ð4Þ

Here Ai(k) is the identity matrix for all i, k and u(k) the com-

manded linear movement. The matrix Bi(k) encodes all head-

ing information, ui(k), and has the form

Bi(0)= yi

cos(ui(0))

sin(ui(0))

� �

Bi(1)= yi

cos(ui(0)+ eif)

sin(ui(0)+ eif)

� �

..

.

Bi(k)= yi

cos ui(0)+ eikfð Þ
sin ui(0)+ eikfð Þ

� �
,

B(k)=

B1(k)

B2(k)

..

.

Bn(k)

2
66664

3
77775

We then define the controllability matrix Ck as

Ck = B(0),B(1), . . . ,B(k � 1)½ �

The finite ensemble with n robots has 3n degrees of free-

dom, but we can control only 2n+ 1 of these. We choose

to control the x, y positions and the net turning command

kf. To control each robot’s x, y position requires Ck to be

rank 2n. If the ei values that scale the turning speed are

unique, the functions cos(e1f),sin(e1f), . , cos(enf),

sin(enf) are orthogonal on any closed interval of length

2p. This means there always exists a sequence of f values

that make Ck full rank. The parameter f controls the sam-

pling frequency, and must be twice the Nyquist frequency

(Shannon, 1949), or

f� p

max
i2½1, n�

ei

ð5Þ

Sampling theory also gives a bound on k, the number of

samples needed (Proakis and Manolakis, 1996, Chapter 5).

In order to differentiate two frequencies e1 and e2, we need

1630 The International Journal of Robotics Research 33(13)
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k � 2p

je1 � e2j
: The bound on k is then given by the mini-

mum separation between e values

k � 2p

min
i 6¼j2½1, n�

jei � ejj

3.2. A k-step control law

We desire the sequence of k control inputs u[0,.,k21] that

will bring the system to the goal state. If Ck is full rank and

k . 2n, the system is underdetermined, with an infinite

number of solutions. We choose from these solutions by

finding the one with minimal control effort. That is, for

any starting state p0 and desired final state pk, the control

sequence is derived by minimizing ku[0,.,k21]k2 subject to

the constraint Cku½0, ..., k�1�= (pk � p0): The solution is

u½0, ..., k�1�= CTk (CkCTk )
�1(pk � p0): ð6Þ

In practice, the Moore–Penrose pseudoinverse results in

better numerical accuracy than the inverse above (Penrose,

1955). We note that for k = 2n, C is almost always ill-condi-

tioned, leading to very large control commands. Best results

are obtained for k ’ 4n, as shown in Section 3.5. When Ck

is full rank, the robots converge exactly.

Our k-step control law allows us to move the robot

exactly to n (x, y) coordinates, leaving us with one addi-

tional degree of freedom. This degree of freedom is deter-

mined by the f values chosen, and an optional turn at the

end. There are several possibilities. We can return the

robots to their original heading, Section 3.3 discusses con-

trolling the robot’s final heading, and in Section 3.4 we use

this degree of freedom to control the distribution of robots

along the perimeter of star-shaped sets.

3.3. On controlling heading

In our previous work with continuum ensembles, we proved

the heading of an infinite ensemble is not fully controllable

(Becker and Bretl, 2012b). Even with a finite ensemble of

robots, the set of reachable headings is much smaller than

the set of all headings. We often cannot even achieve exact

consensus in heading mod(2p). However, it is possible to

achieve approximate consensus in heading. Given a m . 0,

there exists a turning command f such that jmod(ui, 2p) 2

mod(uj, 2p)j \ m for all robots i, j in the ensemble.

3.3.1. Exact heading consensus—infinite

ensemble. Consider an infinite ensemble of robots that

have a continuum of turning rates e 2 [emin,emax],

emin6¼emax. If these robots are initialized to the same head-

ing, it is impossible to make the robots agree in heading at

any angle other than the initial heading. Let

g(T )= 1
2p

R T

0
v(t) dt. Then the heading of the ensemble

parameterized by e at time T is eg(T), and is spread along

a continuum of headings from eming(T) to emaxg(T).

3.3.2. Exact heading consensus—Finite ensemble. For

illustration, consider the hands of a 12-hour clock. The

hour and minute hands overlap 22 times per day, every 12/

11 hours (the first crossing is at ’ 1:05:27), but the hour,

minute and second hands overlap only twice: midnight and

noon. This overlap occurs once per least common multiple

(LCM) of the periods. The LCM of a set of numbers can

be obtained from their prime factorizations if the set is

mutually rational, e.g. the ratio of any two of the numbers

is a rational number (Graham et al., 1990).

Theorem 3.1. It is not always possible to make a finite

ensemble with different turning rates exactly agree in

heading.

Proof. It is sufficient to provide an example. Consider three

robots; a, b, c, all with different turning rates, where

� a turns at unit velocity;
� b turns at 2�unit velocity;
� c turns at e�unit velocity, the base of the natural

logarithm.

Initialize the first two unicycles in the same direction and

the third offset by p. If the unicycles are commanded to

turn at a fixed turning rate, there does not exist a time

when they align. Here, unicycle heading at time t is t, t2,

and te+p. Unicycles a and b coincide infinitely often at

t = k2p for k 2 Z. Robots a, c coincide infinitely often

when

mod(t, 2p)=mod(te+p, 2p)

However, the ensemble a, b, and c only coincides when:

mod(k2p, 2p)=mod(k2pe+p, 2p)

Per modular arithmetic, we divide by the common term 2p:

mod(k, 1)=mod(ke+ 1=2, 1)) 0=mod(ke+ 1=2, 1)

This equality only holds when the quantity ke+ 1=2 2 Z

for k 2 Z. Since e is an irrational number, this does not

occur, because the product of a rational and an irrational

number is always an irrational number. h

3.3.3. Approximate heading consensus—finite ensemble. If

the set of turning rates is not mutually rational, we cannot

reach an exact solution. Instead we search for an approxi-

mate solution. Hurwitz’s Theorem (Chandrasekharan,

1968) tells us that an irrational number ei has an infinity of

rational approximations p

q
which satisfy jei �

p

q
j\ 1ffiffiffi

5
p

q2
,

where p, q are integers. In our application, a finite set of

robots with unique turning rates and an error bound m . 0,
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Hurwitz’s Theorem implies we can always find a finite

T . 0 such that the robots’ alignment error is less than m.

The example robots in Section 3.3.2 achieve approxi-

mate heading consensus at the values listed in Table 1. In

this one example with n = 3 robots, the required time T for

approximate convergence is approximately proportional to

m21. Because the problem of finding the least common

multiple for a set of integers is NP-hard (Majewski and

Havas, 1994), we predict the approximate convergence time

increases superlinearly with the number of robots n.

3.4. Range and bearing control

We define the bearing from a robot to a fixed target as the

counter-clockwise angle from the robot’s heading to a vec-

tor toward the target, as shown in Figure 5. Given a desired

bearing-angle and a desired target, a finite ensemble of

robots can be controlled to the perimeter of any star-shaped

set around that target, as shown in Figure 3. The set S is a

star-shaped set if there exists qc in S such that for all q in S

the line segment from qc to q is in S. We require a function

that maps a robot’s global heading ui to a position on the

perimeter of the star-shaped set, and that the robots turn at

unique rates.

Figure 3 provides an example: 50 robots with e values

evenly distributed
1

2
,

3

2

� �
are controlled to the perimeter

specified by d(c)= 1+
c+sin(4c)

2p
, c 2 [0, 2p], with

bearing a = 0. Because the ei values are mutually rational,

we can achieve exact heading consensus (see Section

3.3.2). In this example the robot’s headings have a period

of 196p. By varying the total commanded turn g(t) we can

modify the distribution of robots along the perimeter.

Shown are g(T1) = 50p and g(T2) = 311.

While our approach works on arbitrary curves, we will

describe the technique by controlling the robots to the peri-

meter of a circle. A circular configuration best addresses

our proposed tasks and the procedure is easy to follow.

Given n robots, we can specify the desired bearing a and

range d for each robot to at most n targets. Let the pose of

the ith robot be (xi(k), yi(k), ui(k)).

After k moves under the motion model (3), the robot is

at heading ui(k) = ui(0)+ eikf. Given d, a, and the ith

robot’s target at (xt,i, yt,i), the desired final position is

xi(k)
yi(k)

� �
=

xt, i

yt, i

� �
� cos(ui(0)+ eikf+a)

sin(ui(0)+ eikf+a)

� �
d ð7Þ

Table 1. Approximate heading consensus values for example robots in Section 3.3.2.

m 1021 1022 1023 1024 1025 1026 1027 1028

t

2p
1 63 3 3 103 7 3 103 2 3 106 5 3 106 6 3 106 2 3 107

(1) (2)

(3) (4a) (4b)

d

α

ψ

θ

Robot coordinate system:
α = bearing, θ = heading d = 1 , α = 0 d = 1 , α = π/ 2

d = 1
α = π

d = {1/ 3, 1/ 2}
α = {π/ 2, 0}

d = 1
α = 0

Fig. 5. Given n robots, where the pose of the ith robot is (xi, yi, ui), we can specify the desired bearing a and range d for each robot to

at most n targets at positions (xt,i, yt,i). Let c = atan 2(yi2yt,i, xi2xt,i), then the heading u = p2a+c.
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This control enables a host of configurations. Several of

these are illustrated and numbered in Figure 5. They

include:

1. Surrounding the target by choosing a constant d and

a = 0, the robots will finish all on a circle of radius d

centered around and aimed toward the target. This con-

figuration is suitable for monitoring a target or deliver-

ing material.

2. Aligning around the target by choosing a constant d

and a = p/2, the robots will form up tangent to a circle

of radius d. By proper choice of f and k, these robots

can be distributed along the perimeter to form a barrier

around the target. This may also be a starting point for

caging manipulation (Fink et al., 2007).

3. Defending the target by choosing a constant d and

a = p, the robots will form up in a circle of radius d

pointing away from the target.

4. Mixing configurations up to n targets may be speci-

fied for the n robots, and each robot can be given par-

ticular values of (d, a). This may be used to surround

multiple targets, form multiple layers around certain

targets, or track multiple targets.

The final degree of freedom: There are 2n+ 1 controlla-

ble degrees of freedom in this system. Of these 2n are allo-

cated to range and bearing (or x, y positions), leaving one

input that is the integral of all turning commands. This

input can be used to return the robots to their initial head-

ings, or to permute their final spacing along the target set.

Section 3.5.1 describes how permuting the final spacing

can be used to search for collision-free paths. Spacing con-

straints are similar to the constraints on heading in Section

3.3. By similar reasoning, if the e values are unique it is

possible to move the robots to approximately the same

position or approximately evenly space them. If the e values

are mutually rational, the robots can be moved to exactly

the same position or be evenly distributed, as shown in

Figure 3. Even so, the set of reachable perimeter spacings

is much smaller than the set of all spacings.

3.5. Open-loop control results

3.5.1. Open-loop simulations. Each simulation starts with

the ensemble of n robots initialized evenly spread with

x = 0 and y 2 [21, 1]. The target is at (2, 0), the com-

manded turn at each step f = p/4, and the desired range

and bearing to the target is (d, a) = (1, 0). This setup with

solutions for k = 70 and 500 is shown in Figure 6.

Path length simulation: We examine the dependence of

overall path length on the number of robots n and the num-

ber of moves k. This allows us to predict the number of

moves necessary to move an ensemble of robots from start

to goal configurations with a near-optimal path length. We

desire short paths because under open-loop control, the true

state diverges from the predicted state due to process noise.

This noise is a function of the input commands, distance

traveled, and modeling errors (Zhou and Chirikjian, 2003).

To minimize state error we want to create short paths with

few turns.

We investigated path length as a function of number of

moves k for k = [1, 500], and ran simulations for n = {2, 5,

10, 20, 35, 50, 75, 100}. By assigning a turning cost of 1/10

for each turn of f = p/4, which approximates the total dis-

tance moved for a similar turn on our hardware robots, we

calculated the path length as

path length= k
1

10
+
Xk

i= 1

u(i)j j

To facilitate comparison, we compare using the nondimen-

sionalized quantity

normalized path length=
1

n

Xn

i=1

path length

distance(roboti, goal)

ð8Þ

The results of these tests are shown in Figure 7(a). Note

that when the number of moves is less than 2n, the matrix C
is not invertible. The normalized path lengths decrease from

k = 2n to about k = 4n as C becomes well conditioned, then

increase with k as the cost of turning dominates.

Probability of collision simulation: Using the same initial

setup, we examined the probability of collision as a func-

tion of (robot diameter/mean distance to goal) and the num-

ber of robots. We ran simulations for n = {2, 5, 10, 20}

robots with radius values ranging from 0.001 to 0.1 units.

For each radius and number of robots, we ran 100 tests by

varying the turning f values and number of moves k. In

these tests, we checked the generated path for inter-robot

collision.

Probability of collision=
tests with collision

100

0 2

1

1

70 moves

(a)
0 2

1

1

500 moves

(b)

Fig. 6. Simulation set up. n robots are initialized evenly spread

between y = [21, 1], goal is at (2, 0), nominal turn f = p/4,

desired range and bearing to the target is (d, a) = (1, 0), yi = 1,

and ei =
1

2
+

i

n
. Shown above are results for n = 10 robots with

(a) 70 and (b) 500 moves.
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The results of these tests are shown in Figure 7(b). The

probability of collision increases nonlinearly with number

of robots and robot radius. The probability that at any time,

n randomly distributed robots collide grows quadratically

in n. These results indicate that collisions provide a hard-

limit on open-loop control for high robot densities. One

method to mitigate this is to wrap (6) in a loop and check

for collisions along the path. If collisions are found, new

values for the turn command f and the number of moves

m are tried until a collision-free path is discovered or the

maximum number of trials is reached. We provide code

implementing this scheme in MATLAB as a free download

(Becker, 2012b).

3.5.2. Open-loop hardware experiments. Our differential

robots (McLurkin et al., 2010) have two direct-drive

wheels, and a ball caster in the back, as shown in Figure 8.

These robots are circular and can turn in place. Each robot

is given a unique internal parameter ei that scales turning

rate, ei 2 1
2
, 3

2

� �
. AprilTag fiducials (Olson, 2011) are

mounted on the top of each robot and used to track robot

pose. Each robot carries a laser-pointer to easily visualize

the heading. We calibrated one robot using the UMBmark

routine (Borenstein and Feng, 1996), then stored a unique

turning rate e on each robot.

For our experiments we used three r-one robots. These

robots were commanded to engage a target located at (1.2,

1.2) m with a desired bearing of a = p and d = 0.3 m.

Turning rates are evenly distributed in
1

2
,

3

2

� �
, and the ini-

tial robot positions are distributed on x = [0, 0.2] m. The

results of 10 hardware experiments are shown in Figure 9.
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10

0

10
1

10
2

10
3

n=2
n=5

n=10
n=20

n=35

n=50
n=75

n=100

Number of moves

N
o

rm
a

li
ze

d
 p

a
th

 l
e

n
g

th

(a)

0 0.02 0.04 0.06 0.08 0.1

0.2

0.4

0.6

0.8

1

Robot diameter/mean distance to goal

P
ro

b
a

b
il

it
y

 o
f 

co
ll

is
io

n

n=2

n=5

n=10

n=20

(b)

Fig. 7. (a) Semi-log plot of normalized path length (8) as a function of the number of moves allowed for control law (6). Results are

shown for different numbers of robots n. The same initial and target distributions are used for each test, as shown in Figure 6. All

solutions bring the robots exactly to the goal position. The paths decrease in normalized path length until ’ 4n as C becomes well

conditioned, then increase again as the cost of turning dominates. (b) Probability of a collision as a function of (robot diameter/mean

distance to goal) for different numbers of robots, n. The setup in Figure 6 is used. The probability of collision increases nonlinearly

with number of robots and robot radius.

(a) Robots with lasers illuminated by CO2 fog.

1

2

3

4

5
6

(b) Robots in dark, surrounding a flask.

Fig. 8. The r-one robots used for hardware verification. Each robot carries a laser-pointer for visualizing heading. Top-mounted

AprilTag fiducials (Olson, 2011) are used for ground truth measurements. Broadcast radio commands are sent simultaneously to all

robots. Reproduced with kind permission from the IEEE (Becker and McLurkin, 2013).
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The final positions had an average distance error of 4.4 cm

with standard deviation 2.8 cm and average heading error

of 0.13 radians with standard deviation 0.20 radians. These

small errors appear to be due to wheel slip and are within

our calibration accuracy.

4. Closed-loop ensemble control

There are several limitations to open-loop control. Pose

error increases with path length, and the path length for

our control law increases with the number of robots

(Figure 7a). This restricts our open-loop control solution to

systems with excellent odometry or small populations of

robots.

Another problem is due to robot collisions. Collisions dis-

turb robot trajectories and may prevent robots from reaching

their goal positions. The control law (6) does not account for

collisions. The probability of collision increases quadratically

with the number of robots.

Both problems could be alleviated by a closed-loop con-

troller. Using global positioning sensing and a feedback

control law, robots can be driven toward goal positions

while rejecting disturbances. This section describes a con-

trol policy that globally asymptotically stabilizes an ensem-

ble of unicycles controlled by uniform control inputs. Code

for simulations and for generating the figures in this sec-

tion is available online (Becker, 2012a).

4.1. Globally asymptotic stabilization of an

ensemble of unicycles

A single nonholonomic unicycle that rolls without slipping

has the continuous time dynamics given in equation (1),

repeated here for clarity:

_qi(t)= yiu(t)
cos ui

sin ui

0

2
4

3
5+ eiv(t)

0

0

1

2
4
3
5

Given qi(0)= ½xi(0), yi(0), ui(0)�T, qgoal 2 Q, the con-

trol problem for regulating position is to find control inputs

linear velocity u(t) and angular velocity v(t) such that for

any qi(0) and qgoal,

limt!‘
xi(t)
yi(t)

� �
� qgoal, 1(t)

qgoal, 2(t)

� �����
����

2

= 0

If such inputs always exist, then we say that the system

is globally asymptotically stabilizable.

We will solve this control problem for n nonholonomic

unicycles that each receive exactly the same control inputs,

but each unicycle has a unique, positive constant ei that

scales the turning rate. Our control policy sets the angular

velocity v(t) to a constant non-zero value, so all the uni-

cycles rotate in place at different rates due to their unique

ei values. The control policy then sets the linear velocity

u(t) to decrease the position error. There exist configura-

tions at which no u(t) can decrease the position error; how-

ever, we prove that at any such configuration, except the

origin, the ensemble can always rotate in place until there

exists some u(t) that will decrease the position error.

We choose v(t) = 1 and without loss of generality set

ui(0) = 0 so that

_xi(t)= yiu(t) cos (eit)

_yi(t)= yiu(t) sin (eit):
ð9Þ

Theorem 4.1. The ensemble (9) for (yi6¼0,

ei6¼0, eij j 6¼ ej

�� ��8 i, j) is globally asymptotically

stabilizable.

Proof. We will prove the origin is globally asymptotically

stabilizable by using a control-Lyapunov function

(Lyapunov, 1992). A suitable Lyapunov function is the

mean squared distance of the ensemble from the origin:

V (t, x, y)=
Xn

i= 1

1

2nyi

x2
i (t)+ y2

i (t)
	 


_V (t, x, y)=
Xn

i= 1

1

nyi

xi(t) _xi(t)+ yi(t) _yi(t)ð Þ

= u(t)
Xn

i= 1

1

n
xi(t) cos(eit)+ yi(t) sin(eit)ð Þ

= u(t)F(t, x, y)

ð10Þ

Here, F(t, x, y) is the summation term which is finite as

long as xi(0) and yi(0) are finite. We note here that V (t, x,

y) is positive definite and radially unbounded, and V (t, x,

y) [ 0 only at (x, y) = (0, 0).

4.1.1. Designing a control policy. To make _V (t, x, y) nega-

tive semi-definite, we choose

u(t)=�F(t, x, y)

0 0.5 1 1.5

0

0.5

1

1.5

x (m)

y 
(m

)

Fig. 9. Hardware experiment with three robots commanded to

engage a target (desired bearing a = p and d = 0.3 m). The

target is represented by the disc centered around an ‘x’ at (1.2,

1.2) m. Turning rates were evenly distributed in
1

2
,

3

2

� �
, and

initial robot positions distributed on x = [0, 0.2] m. Shown are

commanded robot paths, expected final positions, and final

positions for 10 hardware experiments.
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For such a u(t),

_V (t, x, y)= � F(t, x, y)ð Þ2

Note here that _V (t, x, y)� 0, but there exists a subspace

of (x(t), y(t)) such that _V (t, x, y)= 0. Because _V (t, x, y) is

negative semi-definite, we can only claim stability, not

asymptotic stability. To gain a proof of asymptotic stability,

we will use an approach similar to that of Beauchard et al.

(2010) to apply LaSalle’s invariance principle (1960) to this

ensemble. We will proceed by showing that the invariant

set contains only the origin.

4.1.2. Finding the invariant set. Define the set S as all

configurations where no u(t) exists that can decrease the

Lyapunov function:

S = x(t), y(t)j _V t,x(t), y(t))ð Þ= 0
� �

= x(t), y(t)j � F(t, x(t), y(t))ð Þ2 = 0
n o

= x(t), y(t)jF(t, x(t), y(t))= 0f g

Define the time the ensemble enters S as t0, the orientation

of each robot at t0 as u0(e), and t0 = t 2 t0. We then define

all configurations that remain identically in S as the invar-

iant set Sinv. Any configuration that enters this set will

never modify its position because u(t) = 2F(t, x, y) = 0

for any configuration in Sinv. Therefore we can drop the

time-dependence of x(t) and y(t):

Sinv =

x, y
Xn

i= 1

1

n
xi cos(eit

0+ u0i)+ yi sin(eit
0+ u0i)ð Þ

 �
, 8t0 � 0

�����
)(

We can remove u0 with the following change of

coordinates

x�

y�

� �
=

cos(u0) sin(u0)
�sin(u0) cos(u0)

� �
x

y

� �

giving the invariant set

Sinv =

x, y
Xn

i= 1

1

n
x�i cos(eit

0)+ y�i sin(eit
0)

	 
 �
[0, 8t0 � 0

�����
)(

ð11Þ

We must show that no configuration except (x, y) [ (0, 0)

is in Sinv. By a fundamental theorem of sampling theory, the

functions cos(e1t), sin(e1t), . , cos(ent), sin(ent) are ortho-

gonal on any closed interval of length 2p if the ei values

are unique (Proakis and Manolakis, 1996). Therefore, the

only constant x, y values that satisfy (11) are those of the

origin.

We have shown that V is positive-definite and radially

unbounded, _V is negative semi-definite, and the only

invariant point where _V = 0 is the origin. Therefore, we

conclude that under the control policy

u(t)=� 1

n

Xn

i= 1

xi(t) cos(eit)+ yi(t) sin(eit)ð Þ

v(t)= 1

ð12Þ

the origin of the ensemble (9) is globally asymptotically

stable. h

4.2. Closed-loop implementation

In this section, we explain extensions of our control policy

to unidirectional and discrete-time ensembles, and we apply

a standard noise model to our ensemble. These extensions

are useful for implementation of our policy.

4.2.1. Extension to unidirectional vehicles. Some systems,

including the nanocar and scratch-drive microrobot, have

unidirectional constraints on their inputs—they can only

generate a positive linear velocity and can only turn in one

direction. Our control law already uses unidirectional input

for u2. This can be extended to robots with minimum turn-

ing radius, e.g. Donald et al. (2006, 2008), by redefining

the robot center as the center of rotation. To handle linear

velocity constraints, we modify (12) to be non-negative by

setting u1(t) = max(0, 2F(t)). In simulation and hardware

experiments, the resulting unidirectional control policy

converges about half as fast as the original control policy.

Extending the global asymptotic stability result to unidirec-

tional inputs is a promising avenue for future work.

4.2.2. Extension to discrete-time. The analysis in Section

4.1 used continuous time. Many real-life applications,

including the micro- and nanorobots we discussed above,

involve robots controlled and measured in discrete time.

To simplify implementation, we again use the discrete-

time model (2) from Section 2.1, splitting each DT time

step into two stages with piecewise constant inputs. During

the first stage of round k we command the robots to turn in

place f, and during the second stage command the linear

movement

u(k)= � 1

n

Xn

i= 1

xi(k) cos(ui(k))+ yi(k) sin(ui(k))ð Þ ð13Þ

As long as f meets the constraints on the sampling fre-

quency given by (5), our globally asymptotically stable con-

trol results follow.

The control policy (13) is easy to implement, never

increases the summed distance of the ensemble from the

goal, and is robust to standard models of noise.

4.2.3. Applying a standard noise model. To model process

noise, we apply the noise model by Thrun et al. (2005,
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Chapter 5.4.2). This model defines each discrete-time

motion as a rotation, a translation, and a second rotation. It

uses the four parameters a1, a2, a3, and a4 to weight the

correlation of noise between rotation and translation

actions. If the desired rotation, translation, and second rota-

tion are given by [drot1, dtrans, drot2 ], then the actual actions,

after noise is applied, are given by

d̂rot1 = drot1 � sample(a1d2
rot1 +a2d2

trans)

d̂trans = dtrans � sample(a3d2
trans +a4d2

rot1 +a4d2
rot2)

d̂rot2 = drot2 � sample(a1d2
rot2 +a2d2

trans)

ð14Þ

where sample(s2) generates a random sample from the

zero-centered normal distribution with variance s2. We use

this noise model for all discrete-time simulations.

4.3. Closed-loop simulation results

Here, we present our simulation methodology and results

for both continuous- and discrete-time simulations.

4.3.1. Continuous time. We implemented a ensemble with

control policy (12) in MATLAB to simulate n = {50, 100,

500, 1000, 2000} robots in continuous time for two differ-

ent test cases. For these tests yi = ei =
1
2
+ 1

n
i.

Point to point: Robots are initialized to [xi, yi, ui] =

[1, 1, 0] and steered to the origin. Results are shown in

Figure 10(a).

Path to point: Robots are initialized to ui = 2p i
n
, [xi, yi] =

[cos(ui, sin(ui)], a circle of radius 1, and steered to the ori-

gin. Results are shown in Figure 10(b).

From these simulations, we see that under our control

policy, the error converges asymptotically to zero.

Additionally, the Lyapunov function evolution and state tra-

jectories for n = 1000 and 2000 are identical, suggesting

that this level of discretization accurately represents conti-

nuum ensemble (n = N) kinematics.

4.3.2. Discrete time. We simulated a discrete-time collec-

tion of 120 robots under various levels of process noise

parameters with both differing and identical values of e.

Sample trajectories are shown in Figure 11. We explored

three different cases:

Different e values: Simulating with differing e, we found

that with no process noise, the position error of our robot

collection converged to zero error. When the noise model

(14) was applied, the error converged to a non-zero value

for small values of process noise, and diverged for large

values, as shown in Figure 12(a).

Identical robots: When all 120 robots are identical, the

smallest position error is achieved within a specific inter-

mediate range of process noise values. Large a values

caused the error to diverge, while small a values led to very

slow convergence. This result is shown in Figure 12(b).

Effect of rotational noise: Again with identical robots, we

held the translational and cross-term noise at 0.01, a value

which converged quickly in the previous simulation, and
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Fig. 10. Continuous time simulations of n robots, with e 2 [0.5, 1.5] using control policy (12) and u2(t)=cos(
ffiffi
t
p

). Simulations were

run with increasing numbers of robots. Simulations with n � 500 achieved the same error, as shown in the top plots. State trajectories

of the ensemble are shown in the bottom plots. Lines show the path followed for five particular values of e. Thick black lines show the

entire ensemble at instants of time. (a) Robots initialized to (1, 1) and steered to (0, 0). (b) Robots initially evenly distributed about the

unit circle and steered to (0, 0).
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varied the rotational noise, a1. The convergence rate

increased with a1, up to a limit of approximately a1 = 1.

This result is shown in Figure 12(c).

These results show that process noise is necessary for a

finite collection of identical robots to be controllable. We

believe this is a subset of a larger class of problems for

which noise is beneficial, or even necessary, for stability

and control. In particular, these results suggest that identical

robots with uniform inputs should be designed with large

rotational, but small translational and cross-term noise.

4.3.3. Convergence time as a function of population

size. Using the same discrete-time model as Section 4.3.2,

n = 1 to 1000 robots were simulated under control law

(13). The n robots were initialized evenly spread between

x = 0, y = [250, 50], goal positions were equally spaced

about a radius 50 circle centered at (100,0). Three scenarios

were simulated, the first two with different wheel sizes:

ei =
1
2
+ i

n
, and the third with identical wheel sizes. The

first test was noiseless (a1,2,3,4 = 0), while the second and

third tests had noise values a1 = 0.1, a2,3,4 = 0.001. The

systems were simulated until the error was below 10. The

resulting normalized path lengths and total number of steps

are shown in Figure 13. The number of steps required grows

roughly linearly in the number of robots n, having coeffi-

cients [13, 17, 25]. The normalized path length is shown

with a linear fit in
ffiffiffi
n
p

, having coefficients [3.1, 3.4, 3.5].

As with the open-loop controller simulations in Section

3.5, the normalized path length required grows sublinearly

in the number of robots n, but the number of steps required

grows linearly with n. The closed-loop controller requires

more steps than the open-loop controller and ends with non-

zero error. This inefficiency is caused because the closed-

loop controller greedily follows the gradient, rather than

solving for an optimal sequence. Figure 13(b) shows the

ramifications of uniform inputs compared to individually

communicating with addressable robots. The path length is

roughly 3.5
ffiffiffi
n
p

longer than an addressable scheme. The total

number of input commands is also greater. Uniform inputs

requires ’20n broadcast communication messages, com-

pared to exactly 2n messages with addressable robots.

ϵ=0.5 ϵ=1.5

Fig. 11. Simulation results from applying the control policy from (13) for 120 robots with unicycle kinematics. Wheel size (e) was

evenly distributed from 0.5 to 1.5. The plot shows the the starting ‘ ’ and ending ‘ ’ positions along with eight selected state

trajectories (see also Extension 1).
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Fig. 12. Convergence of the position error for discrete-time, finite collections of 120 robots simulated under a standard noise model

(14). In (a) the wheel sizes e 2 [0.5, 1.5], while in (b) and (c), all e are set to 1. (a) and (b) show different levels of noise parametrized

by a ; all a are equal, while (c) shows that focusing the noise in the rotation (a1) improves convergence with identical robots.
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4.4. Closed-loop hardware experiments

Here, we describe our hardware system and explain our

experimental procedures and results.

4.4.1. Differential-drive robots. Our differential robots

have two large direct-drive wheels in the back, and a free-

wheeling ball caster in the front, as shown in Figure 1. In

the experiments shown in this paper, we use wheels with

diameters in the set {102, 108, 127, 152} mm. Trials with

approximately identical-size wheels all used

102 6 0.5 mm wheels.

4.4.2. System overview. Our robots are commanded to

either move linearly or turn in place in units of encoder

ticks. These commands are broadcast over 900 MHz radio

using an AeroComm 4490 card.

Four to five tracking dots are fixed to the top of each

robot. Position and orientation data for each vehicle are

uniquely measured by an 18-camera NaturalPoint

OptiTrack system with reported sub-millimeter accuracy. A

MATLAB program computes the control policy (13) and

sends the global control signal.

This setup is intended to serve as a scale model for micro

and nanorobotic systems with uniform inputs, but care must

be taken with broadcast radio messages. For instance, during

a practice hardware test we noticed exceptionally fast con-

vergence, and traced this to poor placement of the transmit-

ting antenna. Due to interference, robots would occasionally

not receive turn-in-place commands. This effectively intro-

duced large process noise on the rotation and led to fast con-

vergence, similar to that shown in Figure 12(c).

4.4.3. Online calibration. Changing the wheel size of a

differential-drive robot scales both the linear and angular

turning rate, i.e. yi = ei. Surprisingly, calibration is not nec-

essary for successful implementation of the controller. To

see why, first note that the control policies (12) and (13) do

not require vi or ei values. These control policies greedily

follow the gradient, so as long as the yi and ei values have

the correct signs, the control law will decrease the position

error. However, in practice the policy

u(k)= � 1

n

Xn

i= 1

1

ei

xi(k) cos(ui(t))+ yk(t) sin(ui(k))ð Þ

with the correct ei values results in faster convergence. In

our hardware experiments, for every translation command

u(k), we record beginning and ending positions to calculate

di, the distance traveled, and update each ei value according

to the following rule

ei(k + 1)= ei(k)+K
ju(k)j

M

di

ju(k)j � ei(k)

 �
ð15Þ

K is the weighting we give new measurements of ei, and M

is the maximum possible distance we may command the

robot to move. For the experiments shown here K = 0.1

and M = 0.7.

4.4.4. Experiments. We conducted a series of experiments

to show that our control policy converges in a real system.

We show results for unique wheel sizes with online calibra-

tion, for unique wheel sizes without online calibration, and

for approximately identical wheels. We conclude with a

study on convergence time and steady-state error as a func-

tion of the number of robots.

Unique wheel sizes with online calibration: Initially, each

of the robots in Figure 14 was assumed to have ei = 1, and

the actual values of ei were learned through online calibra-

tion. The robots were successfully commanded from a hori-

zontal line, to a box formation, to a vertical line, and finally

to a tight box formation. Figure 15 shows frames from a

video of this experiment. The results in Figure 16 show

convergence both in position and in ei values. Online cali-

bration requires persistent excitation, so convergence slows

as the robots approach their targets.
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Fig. 13. Simulation results for convergence to a desired position as a function of population size under closed-loop control law (13).

Inset to (a) shows starting and goal configurations. 50 trials were run for each configuration. A trend line connects the mean values

and error bars show 61 standard deviation.
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Unique wheel sizes without calibration: It is not neces-

sary to know or to learn the ei values. For this entire experi-

ment ei was set to 1. The four robots in Figure 14 were

successfully commanded from a horizontal line to a box

formation, and then to a vertical line. For each formation,

error converged to less than half a meter, as shown in

Figure 17.

Approximately identical wheel sizes: Even with approxi-

mately identical e values, a collection of robots is still con-

trollable due to process noise. The robots in Figure 14 were

fitted with approximately identical wheels. Figure 18 shows

Fig. 14. Four differential-drive robots with wheel diameters in the set {102, 108, 127, 152} mm (left) and robots with 102 mm wheels

(right). Each robot receives the same broadcast control signal, but the different wheel sizes scale the commanded linear and angular

velocities. Robots courtesy of College of Engineering Control Systems Laboratory (Block, 2012).

Fig. 15. Photographs from hardware experiment steering four differential-drive robots with different wheel sizes. The robots are

initialized in a straight line and all receive the same control input from a wireless signal. A motion capture system is used for feedback

to steer the four robots to the colored targets. In the third frame a disturbance is injected by moving a single robot away from its target.
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online calibration. (Top) e values estimated by online calibration.

(Bottom) Summed distance error as the robots were steered
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successful convergence results of four robots with approxi-

mately identical wheel sizes commanded to the same for-

mations as the previous experiment.

Convergence for varying numbers of robots: Our control

law extends to large numbers of robots, but convergence

time increases with population size. Figure 19 plots mean

error as a function of time for n = 1, 2, 5, 12, and 15

differential-drive robots with approximately identical wheel

sizes being directed to goal positions in a regular

0.2 3 0.2 m grid. As shown in Figure 20, all robots were

initialized in a clump 1 m away from the grid positions in

an enclosed 2 3 1.5 m workspace. Heading error was

artificially increased by each robot adding independent and

identical turning error uniformly randomly distributed on

[2p/4, p/4]. Robots were controlled until they achieved a

steady-state error. The steady-state errors were [3, 14, 12,

24, 34] mm. In each case the position error exponentially

decreases with time, but steady-state error and convergence

time increase with the number of robots. The time to con-

verge within distances � 0.2 m of the targets is roughly

linear in the number of robots n, with approximate rates of

1.8n to converge within 0.2 m and 0.34n to converge

within 0.5 m. For tighter convergence the convergence time

grows superlinearly, with approximate rates of 0.3n2 to

converge within 0.1 m and 0.6n2 to converge within

0.05 m. See Extension 1 for a video of 12 r-one robots

converging from one formation to a second formation.

4.4.5. Applications enabled by position control. The ability

to control position enables many tasks. For example, robot

aggregation collects all the robots to one position; this pri-

mitive operation could be useful for alignment of micro-

and nanorobots. To achieve aggregation, at each control

step the goal position of each robot is set to the mean posi-

tion of the ensemble.

Other tasks include forming subgroups, path- and trajec-

tory-following, dispersion, pursuit/avoidance, manipulation,

and assembly. Each can be implemented by a suitable selec-

tion of time-varying target locations in (13). See Onyuksel

(2012, Chapter 3.6) for an implementation of trajectory

tracking.

Obstacle and collision avoidance can be accomplished

by adding a potential field term to the control policy (12)

as in Choset et al. (2005, Chapter 4). See Onyuksel (2012,

Chapter 3.5) for an implementation of this obstacle avoid-

ance method.

5. Conclusion

In this paper we investigated ensembles of nonholonomic

unicycles that share a uniform control input. We first exam-

ined open-loop position and heading control of an ensem-

ble of nonholonomic unicycles. We provided a control

policy to steer n robots with unique turning rates to desired

range and bearing values in a finite number of steps. This

control policy was validated in simulation and in hardware

experiments.

Open-loop control is rarely satisfactory due to model

and process noise. Through Lyapunov analysis, we derived

a globally asymptotic stabilizing controller for an ensemble

of unicycles in continuous and in discrete time. In simula-

tion, we showed that a discrete-time ensemble of unicycles

converges asymptotically and rejects disturbances from a

standard noise model. In hardware experiments, we demon-

strated online calibration which learned the unknown para-

meter for each robot. These experiments led to surprising

results that (a) our controller still works when all wheel

sizes are incorrectly specified and (b) for certain levels of

process noise our controller works even when all wheel

sizes are the same.

This work shows that an ensemble of unicycles with uni-

form inputs to all robots can be regulated to arbitrary posi-

tions and reject disturbances from a standard noise model.

The analysis suggests that micro- and nanorobots with uni-

form inputs should be designed with large rotational, but

small translational process noise.
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The goal for this experiment is to control all the robots to

position them into a uniform grid. Mean error as a function of

time for 1, 2, 5, 12, and 15 robots being directed to goal

positions in a regular 0.2 3 0.2 m grid. All robots were

initialized in a clump 1 m away from the grid positions in an

enclosed 2 3 1.5 m workspace. Robots were controlled until

they reached a steady-state error.
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With both open- and closed-loop control, convergence

time grows as a function of the number of robots. This

growth makes these methods most suitable for tens of robots.

Future work should investigate how to efficiently control

hundreds to thousands of nonholonomic unicycles simultane-

ously, and develop a theory of ensemble manipulation.

Finally, many micro- and nanoscale robot systems have

uniform inputs, but other motion constraints. In particular,

many systems such as helical swimmers (Zhang et al.,

2009a,b,c) and magnetized Tetrahymena pyriformis cells

(Ou et al., 2013) move in the same direction with different

speeds. See Becker et al. (2013b) for an example of how

control methods in this paper can be modified for these

classes of systems.
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Appendix A: Index to Multimedia Extension

The multimedia extension page is found at http://www. ijrr.
org.

Table of Multimedia Extension

Extension Media type Description

1 Video Hardware experiment with 12
differential-drive robots, all
commanded by the same
broadcast control signal. Robots
move from a rectangular
configuration to form the letter
‘R’. Next, 120 simulated robots
move from ‘‘ROBOTICS’’ to
form ‘‘IJRR’’ despite IID
perturbation.
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