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Abstract—This paper presents an interface for navigating a
mobile robot that moves at a fixed speed in a planar workspace,
with noisy binary inputs that are obtained asynchronously at low
bit-rates from a human user through an electroencephalograph
(EEG). The approach is to construct an ordered symbolic language
for smooth planar curves and to use these curves as desired paths
for a mobile robot. The underlying problem is then to design a
communication protocol by which the user can, with vanishing
error probability, specify a string in this language using a sequence
of inputs. Such a protocol, provided by tools from information
theory, relies on a human user’s ability to compare smooth curves,
just like they can compare strings of text. We demonstrate our
interface by performing experiments in which twenty subjects
fly a simulated aircraft at a fixed speed and altitude with input
only from EEG. Experimental results show that the majority of
subjects are able to specify desired paths despite a wide range of
errors made in decoding EEG signals.

Index Terms—Brain–machine interface (BMI), information
theory, robotics, semi-autonomous navigation.

I. INTRODUCTION

B RAIN–MACHINE interfaces (BMIs) provide new output
pathways for the brain by translating measurements of

brain activity into inputs for an external device [1]. These
output pathways typically function in one of two different
ways: process control and goal selection [1], [2]. In process
control, measurements of brain activity are used to specify an
immediate action to be taken, such as moving a cursor to the
left or to the right. In goal selection, measurements of brain
activity are used to specify the desired output after a sequence
of actions, such as the location at which the cursor should end
up.
Many existing BMIs use process control for movement tasks,

including both invasive BMIs for control of a robotic arm by
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primates [3], and noninvasive BMIs for control of a cursor [4],
a wheelchair [5], [6], or a mobile robot [7]–[9]. A problem
with this strategy, particularly for noninvasive BMIs, is that it
tends to produce erratic motion due to the direct mapping from
noisy measurements of brain activity to control inputs. Methods
of shared control have been proposed as a way to reduce this
problem [5], [6], [8], [10]. With shared control, movement is
determined by “averaging” inputs produced by the BMI with
inputs that might have been expected given a prior model. For
instance, Vanacker et al. [5] enabled a human user to drive a
powered wheelchair with three inputs—“left,” “right,” and “for-
ward”—obtained from electroencephalograph (EEG). These in-
puts were filtered based on the context (e.g., proximity to obsta-
cles) before being mapped to motor commands for the wheel-
chair. Although shared control improved performance, erratic
motion still occurred when user inputs were erroneous or in con-
flict with the prior model used in the filter.
More BMIs are now starting to use goal selection for move-

ment tasks, including an invasive BMI that allowed primates
to choose from a set of reaching targets [11], and noninvasive
BMIs that allowed human users to choose from a set of des-
tinations for a wheelchair [12], or objects to be picked up by a
humanoid robot [13]. A problem with this strategy is that the set
users can choose from is restricted to the goals determined by
the designer, and the user has no control over how the external
device achieves a selected goal. For instance, Rebsamen et al.
[12] enabled a human user to drive a powered wheelchair to a
destination selected by the user from a list of locations. These
destinations were restricted to a given list (bath, bed, office, etc.)
and users did not have any control over paths followed by the
wheelchair to reach the selected destination.
In an effort to address the problems with process control and

goal selection, the BMI proposed by Iturrate et al. [14] uses a hy-
brid strategy for robotic wheelchair navigation. In this strategy,
measurements of brain activity are used to specify a subgoal that
indicates the next location to be moved by the robot. The user
selects from a finite set of locations that are visible to the robot,
and the robot then moves to the selected location autonomously.
By repeating this process, in effect, the user specifies a desired
path step by step.
The BMI we present in this paper uses a hybrid strategy that

is similar to the one proposed by Iturrate et al. [14]. However,
rather than use measurements of brain activity to specify the de-
sired path step by step, we use measurements of brain activity
as evidence to reduce uncertainty about the entire path all at
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Fig. 1. Our interface for flying a simulated aircraft at a fixed altitude and speed with input only from EEG, see (a). The pilot flies the aircraft by imagining either
left- or right- hand movement, the choice between which is based on visual feedback provided by a graphical display. In the tracking task, the display shows the
target path (red curve), the estimated path (blue curve), and the flight path (black curve) in the video obtained from the aircraft’s on-board camera, see (b). (a)
Illustration of our interface. (b) A snapshot of the display in the tracking task.

once. The “uncertainty” here refers to the uncertainty the robot
has about the desired path (which is known only to the human).
Note that our approach does not require the robot to wait until
the entire path is specified before beginning to move. Instead,
the robot may begin to move immediately along its best esti-
mate of the desired path, using all evidence obtained so far. In
order to enable this strategy, wemake system design choices that
allow us to cast interface design as a communication problem.
Our first choice is to model desired paths as strings in an ordered
symbolic language for representing smooth planar curves. Our
second choice is to model the neural sensor as a communication
channel—in particular, to model EEG with left- and right-hand
motor imagery as a binary symmetric channel. Our third choice
is to use a graphical display for providing feedback to the user.
With these choices, the underlying problem is to design a prov-
ably optimal communication protocol that says how the user
should provide inputs, and how the interface should generate
feedback. We derive such a protocol using tools from informa-
tion theory.
We compare our approach to the hybrid strategy of Iturrate

et al. [14] in simulation, and show that our approach performs
better for navigating a robot moving at a fixed speed. We em-
phasize that the goal of this paper is not to provide a comparison
between process control, goal selection, or hybrid approaches.
Such a comparison has been performed in [2]. Instead, our goal
is to propose and evaluate a hybrid approach that outperforms
previous hybrid approaches in navigating a robot moving at a
fixed speed.
As a case study in the application of our approach, we present

a BMI in this paper that allows a human pilot to fly a simu-
lated aircraft at a fixed speed and altitude using EEG (Fig. 1). In
previous work, with a preliminary version of the interface, we
demonstrated EEG-based teleoperation of a physical model-air-
craft in a perimeter surveillance task [15]. Although our pilot
achieved the task by successfully flying the aircraft with EEG
over a 3 km perimeter in 5 min, this preliminary version had
two drawbacks. First, it required access to an overhead map
of the environment to inform the pilot about the aircraft’s pos-

sible routes. Second, it required the pilot to be very good at
providing input commands to the interface (e.g., 90% accuracy
at decoding EEG signals). In this paper, we address the first
issue by displaying possible routes directly on video streamed
from the aircraft’s onboard camera. We address the second issue
by establishing a systematic way to choose interface param-
eters based on measurements of the pilot’s ability to provide
input commands. In this paper, we forego hardware experiments
in order to perform a focused analysis of our interface using
a high fidelity flight simulation environment with many sub-
jects—which makes a hardware demonstration impractical. We
also emphasize that we use an existing algorithm for decoding
input commands from EEG signals, and the goal of this paper
is not to advance the state-of-the-art in EEG signal processing.
The rest of this paper is organized as follows. First, we de-

scribe our approach that allows a human user to navigate a mo-
bile robot moving at a fixed speed in a planar workspace with
EEG signals (Section II). We implemented this approach in our
interface for flying a simulated aircraft with EEG (Section III).
We performed Monte Carlo experiments to compare our ap-
proach the hybrid approach of [14], and performed EEG exper-
iments to evaluate our BMI in a high-fidelity flight simulation
environment. (Section IV). Results showed that our approach
outperformed the hybrid approach of [14] and our BMI allowed
the majority of subjects in EEG experiments to succeed in flying
the aircraft over desired paths (Section V). Finally, we conclude
by presenting the limitations of our approach and how these lim-
itations might be resolved in future work (Section VI).

II. METHOD FOR NAVIGATING A MOBILE ROBOT
IN A PLANAR WORKSPACE

Our goal is to design a BMI that allows a human user to nav-
igate a mobile robot in a planar workspace with EEG signals.
First, we consider the problem of BMI design for specifying a
desired path for a stationary robot, and cast it as a communica-
tion problem that consists of designing an optimal communica-
tion protocol (Section II-A). Such a protocol is provided by the
combination of arithmetic coding as a method of lossless data
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Fig. 2. An ordered symbolic language for describing smooth planar paths. (a) An example alphabet with a set of fixed-length circular arcs. (b) Three sample paths
composed from this alphabet. They exhibit the ordering . (c) All paths composed of three symbols mapped to a real point in using arithmetic
coding. is the probability that the first symbol is or comes before , which is in this example. (a) Our alphabet. (b) Sample curves. (c) Arithmetic
coding.

compression with posterior matching as a capacity-achieving
channel code (Section II-B). Then, we apply this protocol in our
BMI design for specifying a desired path for a robot moving at
a fixed speed (Section II-C).

A. Problem Formulation

In this section, we make three choices about system archi-
tecture that allow us to cast BMI design as a communication
problem. Other choices could have been made—the appeal of
our approach is that it admits a provably optimal communica-
tion protocol (see Section II-B).
1) Choices About System Architecture:
a) Structure of Desired Paths: Our first choice is to use

piecewise-smooth planar curves from an ordered symbolic lan-
guage as desired paths for the robot, which are tracked with an
onboard control system. Any piecewise-smooth planar curve of
arbitrary length is the projection of the
solution to

(1)

for an initial condition

(2)

and piecewise-smooth curvature . We assume
without loss of generality. We consider a

subset of curves for which is piecewise-constant on intervals
of length and takes values in a finite set ,
where elements of are ordered so that for all

satisfying . In particular, on each interval
, we require that

(3)

for some . We refer to the finite set as an alphabet,
to elements of the alphabet as symbols, and to the se-
quence as a string. We denote the set of
all strings by , and the set of all strings of length by .
There is a one-to-one correspondence between and the set of
all curves that satisfy (1)–(3), so we often refer to
itself as a curve. For any two curves
and , we say that if and only
if , where is the minimum index at which

. This ordering corresponds to the notion that
“turns left” the first time it differs from , and allows us to “al-
phabetize” curves just like we would alphabetize strings of text

(see Fig. 2). We associate a statistical model to our symbolic
language by assuming that the user’s desired path is generated
by a Markov process. From offline or online data, we can com-
pute a Markov model that assigns a conditional probability to
each symbol given a string of prior symbols.

b) Measurement and Interpretation of Brain Activity: Our
second choice is to use a binary classifier to distinguish between
left- and right-hand motor imagery in the brain based on EEG
signals. Motor imagery is a well-established paradigm for non-
invasive measurement and interpretation of brain activity that
has recently found application to BMI design [16].With this par-
adigm, the human user imagines moving either their left or right
hand, and the classifier attempts to recover this binary decision
based on characteristic patterns of EEG signals in particular fre-
quency bands. Although the details of this process are complex
(and a topic of active research), in this paper we treat it as a black
box and model it simply as a binary symmetric channel with
some crossover probability [17]. The input to this channel is

, where we associate with “left” and
with “right.” The output of this channel is , where

if and otherwise.
c) Mechanism for Sensory Feedback: Our third choice

is to use a graphical display to show candidate paths to the
human user. As we will see in Section II-B, the best choice of
to show at time step is an estimate of the user’s desired

path given the statistical model associated with our symbolic
language and the outputs of the binary symmetric
channel we defined above. This visual feedback is “causal” in
the sense that it depends only on prior outputs of the channel
(i.e., only on the past history of EEG signals). We also model
this feedback as “noiseless” in the sense that we assume the
human user can decide with perfect accuracy whether or not

, i.e., whether or not their desired path is to the left
of the candidate path (according to the lexicographic ordering
we defined above). It will turn out that this decision is exactly
the one required by the optimal communication protocol that
we derive in Section II-B. The availability of causal noiseless
feedback cannot increase the capacity of a binary symmetric
channel, which is an upper bound on the achievable transmis-
sion rate. However, this feedback can dramatically simplify the
communication protocol [17], which is helpful because this pro-
tocol must be implemented in part by a human user.
2) Interface Design as a Communication Problem: With the

choices we made in the previous section, our goal has now be-
come the design of a protocol to communicate a string in an
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Fig. 3. Our abstraction of BMI design as a communication problem. The
human user conveys their desired path to the robot through a binary
symmetric channel with causal feedback provided by a graphical display. The
communication protocol is designed in two parts: a source code and a channel
code. See text for details.

ordered symbolic language across a binary symmetric channel
with causal noiseless feedback. Such a protocol consists of an
encoder (essentially mapping the estimate to the input )
and a decoder (essentially mapping the outputs to the
estimate ), as shown in Fig. 3. We call this protocol optimal
if it achieves capacity and if as .
The source-channel separation theorem tells us that the de-

sign of an optimal communication protocol can be done in two
stages [17]. The first stage produces a source code, which is an
invertible mapping from strings to points in
the unit interval. Given a desired path , we follow standard
convention and call the message point. The source
code is optimal if the average number of bits used to represent
matches the entropy of as given by the statistical model

defined in Section II-A1a. The second stage produces a channel
code, which is a sequence of functions that
determine how the encoder chooses the input , and a sequence
of functions that determine how the de-
coder computes the estimate . The channel code is optimal if
it achieves the capacity C and if
as . If both the source code and the channel code are
optimal, the resulting communication protocol will be optimal.
We emphasize that “source code” and “channel code” are not
synonymous with “encoder” and “decoder” (see Fig. 3).
Good choices for both a source code and a channel code will

be derived in the following section. Keep in mind that “good”
in this context means not only that codes are optimal but also
that they are implementable in part by a human user.

B. Solution Approach

In the previous section, we reformulated BMI design as an
optimal communication problem, which consisted of designing
an optimal source code and an optimal channel code. In this
section, we derive such codes using arithmetic coding (as the
source code) and posterior matching (as the channel code).
1) Source Code: Our choice of source code is provided by

a method of lossless data compression called arithmetic

coding [18]. Arithmetic coding maps a random string
with random variables into

a subinterval . Any point can be
used to represent , here we simply choose as the midpoint

. A set of paths and their mappings under a uniform
prior over symbols are illustrated in Fig. 2(c). Given a desired
length , the inverse mapping , from a real
number to a random string ,
is described in Algorithm 1. This method is both optimal and
has the useful property that it preserves lexicographic ordering,
so that if and only if .

Algorithm 1 Source Decoding:

Input:

Output:
1:
2:
3: for to do
4:
5:
6: repeat
7:
8: until
9:
10:
11:
12: end for

2) Channel Code: Our choice of channel code is provided
by a principle for constructing optimal communication pro-
tocols in the presence of noiseless feedback that is called
posterior matching [19]. This principle requires only the
estimate to be provided as noiseless feedback after ob-
taining channel outputs. For our communication channel
(Section II-A1b)—a binary symmetric channel with noiseless
feedback—posterior matching has a simple interpretation. Let
and be the random variables that specify the inputs

and the outputs of the channel, respectively. Let be the
random variable that specify . Denote the random sequence

as . Assume that after receiving channel
outputs, the decoder has computed the posterior distribution

, has chosen the estimate
and has provided as feedback to the encoder. Then, the
encoder selects the next input as

.
(4)

After receiving the channel output , the decoder uses the
Bayes’ rule to obtain . If (the
case is analogous), the decoder computes

(5)
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Fig. 4. Four iterations of the communication protocol between the user and the interface to the robot. The interface maintains a posterior distribution over the
unit interval and displays the path that corresponds to the median of this distribution. The user responds by comparing the desired path to the estimated path using
lexicographic ordering. See text for details. (a) Step 0. (b) Step 1. (c) Step 2. (d) Step 5.

where is the crossover probability and is a normalizing con-
stant. Then, the decoder chooses the estimate as

(6)

the median of this posterior distribution, and provides as
feedback to the encoder. The sequences of functions and
define an optimal communication protocol for transmission of
over a binary symmetric channel with noiseless feedback.
This communication protocol is not only optimal but also

easy for a human user—the “encoder”—to implement. Assume
a graphical display shows the user the path
that corresponds to the estimate . Then, the user only has
to decide if their desired path appears lexicographically to
the left (hence ) or to the right (hence ) of .
Fig. 4 shows an example. Initially, the posterior is uniform and
the median corresponds to the straight path given by . Be-
cause turns more right than , the user provides .
After a true observation , the interface updates the pos-
terior—increasing the probability of all paths to the right of
and decreasing the probability of all paths to the left of —and
generates a new estimate . In this case, the estimated path
moves to the right of , so the user provides . As

the interface receives more inputs, the posterior concentrates on
smaller intervals around the desired path and a longer prefix of
the estimated path matches with the desired path. For instance,
see the posterior and the estimated path after five “correct” in-
puts in Fig. 4(d).

C. Application to Navigation of a Moving Robot

In this section, we apply the optimal communication protocol
derived in the previous section to enable navigation of a mobile
robot that moves at a fixed speed. We make use of the following
definitions.
• : User’s desired path (not known to the robot).
• : The interface’s current estimate of .
• : The path the robot is following at a fixed speed.
• : The path the robot follows before starts.

The procedure implemented by the human user to specify
is described in Algorithm 2. The user provides either a

“left” (left-hand motor imagery) or a “right” (right-hand motor
imagery) input to indicate whether turns “more left”
or “more right” than , which is displayed by the inter-
face as part of feedback. This is easy to implement for a trained
human eye since it only requires a visual search in the local
neighborhood of .
The procedure implemented by the interface to move the

robot along the path being specified by the user is described
in Algorithm 3. At first, begins with a fixed ,
a straight path of some length, so that the interface can ob-
tain several user inputs till the robot approaches the end of

. The estimated path is initialized to , and
updated after the th user input to according to the protocol
(Section II-B). In particular, after observing , the message
point is computed using (5), (6) and then decoded
as a path using Algorithm 1. The robot moves
along at a fixed speed, and whenever it approaches the
end of , the interface appends the first symbol of
to . is then shifted one symbol ahead, which in
the protocol corresponds to assigning zero probability to paths
that do not begin with the appended symbol, and normalizing
the posterior so that remains as the median.

Algorithm 2 Human User’s Algorithm for Providing
Inputs.

1:
2: loop
3: Observe and robot state
4: if then
5: Input “left” by left-hand motor imagery
6: else
7: Input “right” by right-hand motor imagery
8: end if
9:
10: end loop
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Algorithm 3 Robot Navigation Algorithm.

1:
2:
3:
4: loop
5: Display and robot state
6: Move robot along at fixed speed
7: if User’s th input is observed then
8: Compute from using (5), and (6)
9: Compute from using Algorithm 1
10:
11:
12: end if
13: if Robot moved till the end of then
14: Append the first symbol of to
15: Shift one symbol ahead
16: end if
17: end loop

III. INTERFACE FOR FLYING A SIMULATED AIRCRAFT
WITH EEG

This section describes the implementation of our brain–ma-
chine interface for flying a simulated aircraft at a fixed speed
and altitude with input only from EEG.

A. The Simulated Aircraft

We used an high-fidelity flight simulation environment for
model aircrafts based on Fs One RC flight simulator [20]. The
simulated aircraft was controlled by an autopilot that imple-
mented a receding-horizon linear quadratic regulator to fly over
paths specified by the user [21]. We fixed the aircraft’s speed to
25 m/s, and the aircraft’s altitude to 200m. The aircraft’s camera
faced towards the direction of the flight, was inclined 45 with
respect to the ground, and was roll-angle stabilized by the au-
topilot to ensure that the human pilot had a good field of view
of the ground ahead of the aircraft.

B. The Feedback Stimuli

The interface provided visual feedback to the human user
by showing real-time state and video obtained from the air-
craft and the paths , denoted estimated path, and
(without ), denoted flight path, in a graphical display [see
Fig. 1(b)]. These paths were augmented into the video frames by
placing them in a horizontal plane just above the ground-level
in the 3-D workspace, and then projecting them onto the 2-D
image plane.

C. Configuration of the Interface

In this section, we describe the important parameters that af-
fected the performance of our interface.
1) Crossover Probability: Crossover probability was the

fraction of input commands that were expected to be corrupted
due to noise in decoding EEG signals (Section II-A1b). This
probability was estimated by comparing observed input com-
mands with ground-truth input commands at the beginning of
each experimental session (see Section IV-D3).

2) Symbol-Length: Symbol-length affected the trade-off be-
tween how “expressive” (the degree in which our space of paths
approximated the space of paths the pilot might desire to fly
over) and how “compact” (the expected number of input com-
mands that were necessary to infer the pilot’s desired path cor-
rectly) our space of paths was. In order to balance this trade-off,
symbol-length was configured adaptively with respect to the
user’s performance in providing input commands at the begin-
ning of each experimental session (see Section IV-D3). We re-
stricted symbol-length to be between 100 and 500 m, because
we assumed that values smaller than 100 m might put an exces-
sive cognitive load on users, and values larger than 500 mmight
not provide a space of paths expressive enough to accomplish
our experimental tasks (see Section IV-A).
3) Alphabet of Symbols: We used the alphabet shown in

Fig. 2(a). It consisted of seven circular arcs with central angles
evenly distributed in .We empirically found this al-
phabet to provide a good balance between expressiveness and
compactness of the generated paths.
4) Statistical Model: We assumed a zeroth-order Markov

model given by a discrete Gaussian kernel centered on the
straight arc, which was denoted “model1” and illustrated in
Fig. 6. In this statistical model, the straight arc had the highest
probability and taking a wider turn was more likely than taking
a sharper turn. This corresponded to our prior belief on the
structure of paths that pilots could prefer to fly the aircraft over.
5) Startup Delay: In the beginning of flight, the aircraft

flew over a straight path of two symbol-lengths before
flying over the path specified by the user. We empirically found
that using a of two symbol-lengths provided a signifi-
cant improvement over using a of one symbol-length in
Monte Carlo experiments (see Section IV-C).
6) Estimated-Path Length: Estimated paths were decoded up

to four symbols, i.e., in Algorithm 1. A large number of
symbols was not desired because all symbols except the first few
ones might have an almost zero probability of being part of the
user’s desired path and showing many symbols might make the
display cluttered and more difficult for human users to provide
their inputs. In contrast, a small number of symbols might lead
to a situation where the estimated path overlaps with the pilot’s
desired path, causing the user’s algorithm for providing inputs to
fail.We empirically found that this situation wasmostly avoided
when .

D. Decoding Input Commands From EEG Signals

The interface decoded the pilot’s input commands from EEG
signals using an asynchronous classifier implemented in C.
EEG signals were collected by eight electrodes positioned on
the scalp at with ground mea-
sured at , and reference measured at [22]. Measured
signals were amplified (James-Long Co.), low-pass filtered,
and synchronously sampled at 400 Hz by an IOtech Personal
Daq 3000 A/D converter. The classifier was trained using the
algorithm in [23], which used common spatial analytic pattern
(CSAP) to extract discriminative signals that capture large dis-
parities for each input command by viewing it as a blind-source
separation problem. Incoming signals were processed at 15 Hz,
using a hiddenMarkov model (HMM), to perform classification
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Fig. 5. Illustration of the experimental tasks used in the EEG experiments. The target paths selected for the tracking task in the practice, adapt, and fixed phases
were shown in (a), assuming a symbol-length of 330 m. In the high-level task, illustrated in (b), there was no specific target path to track, instead the objective was
to fly the aircraft first over the treeline, and then over the house site-1 and site-2. (a) The target paths selected for the tracking task, (b) The target terrain structures
selected for the high-level task.

by belief propagation. The decoding occurred asynchronously,
i.e., when the belief probability exceeded a threshold.

IV. EXPERIMENTAL PROCEDURE

This section describes the experimental procedure we used
to evaluate the method described in Section II, and the BMI
described in Section III.

A. Experimental Tasks

We used the following two tasks to evaluate our interface.
1) Tracking Task: The goal was to fly the aircraft over a

given target path, which was displayed to the user during flight
[see Fig. 1(b)]. This task measured our interface’s ability in
allowing users to fly the aircraft over their desired paths. In
order to succeed in the task, the human user was required to
specify a path that matched the target path symbol by symbol.
The interface terminated a run of a tracking task as soon as
the flight path deviated from the target path in order to pro-
vide a fair comparison of performance across different runs.
We generated target paths randomly according to a given statis-
tical model and symbol-length. The target paths consisted of 3
km/symbol-length (rounded to nearest integer) symbols, hence
they were approximately 3 km long, which was chosen to re-
strict the duration of an experimental run to about 2 min—the
time it took the aircraft to fly a 3 km distance.
2) High-Level Task: The goal was to fly the aircraft over a

given list of target terrain structures, which were indicated on an
overhead map of the environment and were shown to the user
before flight. Unlike the tracking task, the user was not required
to fly the aircraft over a specific target path, instead the actual
path specification was completely left up to the user. This task
measured the efficacy of our interface when the desired path
was not shown as reference in the display. In order to succeed
in the task, the human user was required to specify a path that
hit all targets in the given order. Hitting targets in an arbitrary
order was not allowed to provide a fair comparison of perfor-
mance across subjects. We identified three targets on the map:
a treeline, and two house sites [see Fig. 5(b)]. We said that a

house site was hit by a path if the site center was within 250 m
of some point along the path, and a treeline was hit by a path
if all points along the treeline were within 250 m of some point
along the path.

B. Evaluation Criteria

We used the following measures to evaluate the performance
of our approach in Monte Carlo experiments.
• Success rate: The fraction of trials that were successful in
Monte Carlo simulations of a thousand trials for a given
symbol-length.

• Safe symbol-length: The smallest symbol-length less than
or equal to 500 m, at which a success rate of 90% or higher
was achieved.

We used the following measures to evaluate the input perfor-
mance observed during a tracking task.
• Input error (E): Fraction of input commands that were
incorrect across all input commands.

• Input rate (R): Average number of input commands (bits)
received per second.

• Information transfer rate (ITR):Number of reliable bits
per second given by

where is the number of input classes.
We used the following measures to evaluate the subject’s per-

formance in flying the aircraft using our interface.
• Run success: A run was said to be successful if the task
performed in the run was successful.

• Symbol-count (SC): Number of symbols in the flight path
that matched the target path in the tracking task.

• Hit-count (HC): Number of targets that were hit by the
flight path in the high-level task.

C. Monte Carlo Experiments

We evaluated the performance of our approach (Section II)
and the hybrid approach of [14] under different configurations
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Fig. 6. Results of Monte Carlo experiments comparing different configurations of our approach and the hybrid approach of [14]. The figures at top show the
success rate of each method in our navigation task as a function of symbol-length. The figures at bottom show the priors for each statistical model.

by performing Monte Carlo experiments. In these experiments,
the performance was measured by running several trials of the
tracking task with randomly sampled inputs under each config-
uration. The compared configurations are described below.
1) Sequential-Select: In this configuration, we implemented

the hybrid approach of [14] as follows. We allowed the user
to specify a desired path symbol by symbol using three inputs
'' '''' '''' '' . Recall that we denoted the alphabet of
symbols by , and assumed that the symbols
were ordered so that if and only if . Let
be the th symbol in , and be a predetermined

symbol that the robot followed at start. The user provided inputs
to specify until the robot approached the end of . Let

be the th symbol chosen so far by the user. At first
was . The user provided “left” if , “right” if

, and “rest” if . Upon receiving a “left”
or “right” input, the interface updated to be (if

) or (if ), respectively. Note that “rest” inputs
were discarded by the interface, and was set to when the
robot approached the end of , at which point specification
of started.
2) Robust-Sequential-Select: In this configuration, we

attempted to increase the robustness of the hybrid approach
of [14] by making use of the “rest” inputs in sequential-se-
lect as follows. After receiving a “rest” input, the interface
entered into a “lock” mode where “left” or “right” inputs did
not immediately change the current selection . In “lock”
mode, the interface maintained a posterior probability over
the correct input . Let be the random variable denoting
the th observation in the “lock” mode, with '' ''.
The interface assumed a uniform prior , and computed
the posterior after each using Bayes’ rule
as ,
where was a normalizing constant. Upon receiving an ob-
servation '' '' (or “right,” analogously), if the posterior
probability of “left” after was greater than that of
“rest,” the interface terminated the “lock” mode and updated

accordingly. The “lock” mode was also terminated when
the specification of the next symbol started.

3) Our Approach Uniform: In this configuration, our ap-
proach used a statistical model with a uniform prior over sym-
bols, denoted “uniform,” and the robot followed an initial path
of one symbol-length at start. This configuration provided a fair
comparison against sequential-select and robust-sequential-se-
lect, because all configurations shared the same statistical model
and the startup condition.
4) Our Approach Delay Uniform: In this configuration,

the robot followed an initial path of two symbol-lengths at start.
Note that following such a path introduced a delay that was
longer than the delay in the previous configurations, and this
might lead to a better performance because the user had more
time to specify .
5) Our Approach Delay Model1: In this configuration,

which was the same as the configuration of our interface, the sta-
tistical model used by our approach was “model1,” as described
in Section III-C and illustrated in Fig. 6.
6) Our Approach Delay Model2: In this configuration,

our approach used a statistical model, denoted “model2” and
illustrated in Fig. 6, that was a zeroth-orderMarkovmodel given
by a discrete Gaussian kernel centered on the straight arc, with
a variance smaller than the variance used in “model1” and with
the probabilities of set to 0.05. The purpose of evaluating
this configuration was to see how much performance could be
gained if desired paths were generated according to a model
with less uncertainty such as “model2.”
In Monte Carlo experiments, we randomly sampled inputs at

every second to yield the same ITR for each config-
uration. In particular, to yield ITRs of 0.75, 0.50, 0.25 bits/s,
the simulated inputs satisfied an input error of 0.04, 0.11,
0.21 for , and 0.17, 0.26, 0.38 for , respectively,
from lowest to highest ITR. The probability transition matrix

, which specified the conditional probability of generating
when the correct input was , was such that

if , and otherwise. We
computed success rate as a function of symbol-length for each
ITR in , by running a thousand trials for each
symbol-length from 100 to 500 m with increments of 10 m. We
computed safe symbol-length from the resulting success rates.
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We also note that the target paths were randomly sampled ac-
cording to the statistical model used by each configuration.

D. EEG Experiments

We evaluated the performance of our BMI (Section III) with
20 able-bodied subjects that were right-handed, between the
ages of 20 and 30, and had normal or corrected-to-normal vi-
sion. Only two subjects had prior experience in EEG motor-im-
agery based BMI studies. In total, 57 experimental sessions
were performed by these subjects. An experimental session con-
sisted of the following five phases in the given order. This study
was approved by the Institutional Review Board of the Univer-
sity of Illinois.
1) Training Phase: We collected labeled EEG data to

train the decoding algorithm by displaying visual prompts,
either a left or a right arrow, for a duration of four minutes.
The prompts were chosen according to a randomly generated
sequence containing 30 “left” and 30 “right” input commands.
Each prompt lasted four seconds with no break period in
between the prompts. The decoding algorithm was trained only
once using the EEG data collected from these 60 prompts.
2) Practice Phase: Subjects performed several runs of the

tracking task, denoted as practice-runs, using a keyboard instead
of EEG to provide “left” and “right” inputs until they succeeded
in the task. The goal was to make the subject well acquainted
with the use of the interface. We set the crossover probability to
4% and the symbol-length to 100 m so that the subjects could
succeed in the task only by choosing their input commands ac-
curately to yield a low input error, and by providing these inputs
quickly to yield a high input rate. This phase ended after the sub-
ject succeeded in the tracking task using keyboard.
3) Adapt Phase: Several runs of the tracking task, de-

noted as adapt-runs, were performed to configure the two
important parameters, crossover probability and symbol-length
(Section III-C), with respect to the subject’s performance in
providing input commands through EEG motor imagery. After
each adapt-run, we measured the input rate, the input error
and the run success (Section IV-B). In the first run, we set the
parameters to their predetermined values (crossover probability
was 15% and symbol-length was 337 m). In all future runs, the
interface chose crossover probability to be the input error of the
previous run, and symbol-length to be the safe symbol-length
computed from Monte Carlo simulations of the tracking task
using random inputs yielding the input error and input rate
of the previous run. If the safe symbol-length did not exist,
symbol-length was set to 500 m. The subject performed a new
run until the chosen parameter values satisfied the following
convergence criteria: the subject succeeded in the last run, the
chosen symbol-length was within some tolerance (100 m) of
the symbol-length used in the last run, the subject performed
at least three runs, and the subject performed at least five runs
if the chosen symbol-length was longer than 400 m. If the
convergence criteria were met, the interface, future phases, and
future runs were said to be properly configured. This phase
ended after the interface was properly configured, in which
case it was considered a successful adapt-phase, or after 10
adapt-runs.

TABLE I
SAFE SYMBOL-LENGTHS

4) Fixed Phase: The subjects performed several runs of the
tracking task, denoted as fixed-runs, with the parameters chosen
in the adapt phase. This phase ended after a successful fixed-run,
in which case it was considered a successful fixed-phase, or after
10 fixed-runs.
5) Free Phase: The qualified subjects performed severals

runs of the high-level task, denoted as free-runs, with the param-
eters chosen in the adapt phase. A subject was qualified for free
phase if the preceding fixed phase was successful. The number
of free-runs performed in this phase was determined by the pilot
and the operator of the experiment. A free-phase was said to be
successful if at least one of the free-runs was successful.
We note that in all runs of the tracking task in the practice,

adapt, and fixed phases, the aircraft started flight from the same
point, but the sequence of symbols in the target path were unique
to each phase [see Fig. 5(a)]. In the free phase, the aircraft started
flight from a different point to make the terrain flown over in
free-runs different than the terrain flown over in runs of the
tracking task.

V. EXPERIMENTAL RESULTS

This section describes the results obtained from the experi-
ments described in the previous section.

A. Results From Monte Carlo Experiments

Results show that our approach outperformed our implemen-
tations of the hybrid approach of [14] under all settings consid-
ered in Monte Carlo experiments, and the performance of our
approach could be improved by increasing the startup delay or
by using nonuniform statistical models. Fig. 6 shows the suc-
cess rates as a function of symbol-length under three different
ITRs and Table I shows the safe symbol-lengths for each con-
figuration. We summarize the results as follows.
• Sequential-select was not robust to input errors, and did
not have a safe symbol-length. Failures in sequential-select
trials might be due to false observations of “rest” inputs
that occurred shortly before the end of the time window
for symbol selection.

• Robust-sequential-select provided a significant improve-
ment over sequential-select, and had safe symbol-lengths
except for the lowest ITR.

• The baseline configuration of our approach, “our ap-
proach + uniform” outperformed sequential-select and
robust-sequential-select under all considered values of
symbol-length and ITR.

• Increasing startup delay improved the performance signifi-
cantly. It shortened the safe symbol-length more than 70 m
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Fig. 7. Results obtained in adapt- and fixed-runs of all runs, shown in (a), and of a sample session, shown in (b). Each marker in (a) denotes the input error,
the input rate and the success of a run. In the sample session, the adapt-phase consisted of six runs (unshaded region) and the fixed-phase consisted of three runs
(shaded region). Successful runs were denoted with a green solid circle in (b). (a) Results in all adapt- and fixed-runs. (b) Results in adapt- and fixed-phases of a
sample session.

for the two higher ITRs, and unlike the baseline configu-
ration of our approach, it had a safe symbol-length for the
lowest ITR.

• The performance obtained with the three statistical models
were comparable, with “model2” yielding marginally
better results especially for the lowest ITR. The perfor-
mance differences between the statistical models could
be explained by the entropy of the model priors, which
were 2.81, 2.70, and 2.35 for “uniform,” “model1,” and
“model2,” respectively.

B. Results From EEG Experiments

Results show that our interface allowed subjects to specify
desired paths accurately for our simulated aircraft even under
very low ITRs. Observed input performances with EEG were
very low, which led to the failure of many runs (Section V-B1),
and a low number of successful adapt phases (Section V-B2).
Despite these low input performances, half of the subjects suc-
ceeded in the fixed phase (Section V-B3), and most of the qual-
ified subjects succeeded in the free phase (Section V-B4).
1) Results With Tracking Task: Subjects performed several

runs of the tracking task by providing inputs through a keyboard
in the practice phase, and through EEG in the adapt and fixed
phases. Results show that input performances with EEG were
significantly lower than the performances with a keyboard due
to errors in decoding EEG signals, and only the runs with a suf-
ficient level of input performance were successful. In the prac-
tice phase, all subjects succeeded in the tracking task after a few
trials and became well acquainted with the use of the interface.
In successful practice-runs, subjects yielded on average an input
error of 0.03, an input rate of 1.02, and an ITR of 0.86. In the
adapt and fixed phases, in total, subjects performed 622 runs, of
which only 78% had an input error less than 0.5, only 50% had
an ITR greater than 0.05, only 11% were successful [Fig. 7(a)].
In successful adapt- and fixed-runs, subjects yielded on average

an input error of 0.24, an input rate of 0.85, and an ITR of 0.18.
Table II shows results obtained in adapt- and fixed- runs for each
subject. Out of 20 subjects, 15 of them (subjects A-O) succeeded
in at least one of the runs, and three of them (subjects A, B, C)
succeeded in most of the runs by yielding on average an ITR
greater than 0.15 and a symbol-count larger than five symbols.
The best symbol-count, 13 symbols (each with length 223 m),
was achieved by subject A in one of the adapt runs.
2) Results in Adapt Phases: The interface was properly con-

figured in only 30% of the sessions (17 out of 57). The failure
in adapt-phases could be explained by the observation that the
ITRs (0.05 bits on average) in failed adapt-phases were signif-
icantly lower than the ITRs (0.12 bits on average)
in successful adapt phases. Fig. 7(b) shows the results obtained
in the adapt phase of a sample session. Here, the interface was
properly configured after six adapt-runs, with crossover proba-
bility set to 0.20 (input error observed in the last adapt-run), and
symbol-length set to 420 m. On average, in successful adapt-
phases, seven adapt-runs were performed, and crossover proba-
bility was set to 0.25. In the majority of these phases, the chosen
symbol-length was 500 m, the largest value allowed, and in the
rest of them, it was 345, 420, 466, 484, 490 m from smallest to
largest.
3) Results in Properly-Configured Fixed Phases: Results

show that subjects succeeded in the tracking task after the
interface was properly configured, if their input performances
were comparable to the input performances that had been used
to configure the interface. In total, 16 properly-configured
phases were performed by 11 subjects, and all these phases
except one were successful (Table II). Fig. 7(b) shows the
results obtained in the fixed phase of a sample session. Here,
the subject succeeded in the fixed-phase after failing in the first
two fixed-runs. This failure could be explained by observing
that the input errors in these runs were greater than the input
error in the last adapt-run, which was used to configure the
interface, while the input rates were similar. In fact, 89% of the
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TABLE II
EXPERIMENTAL RESULTS FOR EACH SUBJECT

failures in properly-configured fixed-runs could be explained
by the same observation.
4) Results in Free Phases With High-Level Task: Results

show that qualified subjects could fly the aircraft over their de-
sired path in the absence of a specific target path shown as part
of the feedback stimuli. Ten subjects were qualified for the free
phase by succeeding in the preceding fixed phase. Seven of these
subjects succeeded in the high-level task in at least one of their
free-runs (Table II). Out of 30 free-runs performed in total, 12
runs were successful (hit-count was 3), and in 8 runs hit-count
was 2. Fig. 8 shows the flight paths obtained in all free-runs.
Across successful free-runs, the length of the flight path from
start to the first point that hit the third target (site-2) was be-
tween 4.8 and 6.2 km with a mean of 5.4 km. The mean flight
path computed by averaging all paths from successful free-runs
closely matched our expectation of the path subjects would fly
the aircraft over.

VI. CONCLUSION

In this paper, we presented an EEG-based brain–machine in-
terface for flying a simulated aircraft at a fixed speed and altitude
with noisy binary inputs that were provided by imagining either
left- or right-hand movements in the brain. Our approach was
to construct an optimal communication protocol that said how
user inputs and sensory feedback must be generated in order
to convey the user’s desired path to the aircraft as quickly and
as robustly as possible. Experimental results showed that our
approach outperformed an existing state-of-the-art hybrid ap-
proach in navigating a robot moving at a fixed speed and our
BMI based on this approach allowed human users to fly a sim-
ulated aircraft successfully despite very low ITRs with EEG.
Poor input performances might be due to training our EEG de-
coding algorithm with a small amount of data collected at the
start of each experimental session. Better input performances
might be obtained by retraining during a session or by using

a larger dataset that might include signals from a bigger set
of electrodes. The success in our experiments depended criti-
cally on the adaptation of the interface to the user’s input per-
formance. We enabled users with higher input performances to
navigate the robot along more expressive paths by increasing
(roughly) the precision at which desired paths were specified.
With this adaptation, our interface provided a comfortable ex-
perience to our subjects. A discomfort might have been experi-
enced if we were to use symbol-lengths smaller than 100 m, but
in practice such discomforts might be avoided by adjusting the
robot speed accordingly. In the rest of this section, we present
the limitations of our approach and how these limitations might
be resolved in future work.

A. Limitations and Future Work

1) Choosing Structure of Desired Paths Systematically: Our
interface used a heuristic alphabet associated with a set of cir-
cular arcs and a heuristic statistical model given by a zeroth-
order Markov model. In future work, we intend to make the
choice of the alphabet for representing paths and the choice of
Markov model more systematic by learning them from human-
demonstrated data.
2) Enabling Navigation Amidst Obstacles: In this paper, we

did not consider obstacle avoidance. It might be possible to in-
corporate this into our approach by choosing structure of desired
paths systematically (see previous paragraph) using a dataset
of human-demonstrated paths for navigation amidst obstacles,
similar to the work in [24]. Note that this would assign zero
probability to paths that collide with obstacles.
3) Extending Our Approach to More Than Binary Inputs: In

our interface, users specified desired paths only with binary in-
puts. One way of extending our approach to make use of discrete
inputs with more than two choices might be as follows. Recall
that in the case with binary inputs, the estimated path after
user inputs, , partitioned the set of all possible paths into
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Fig. 8. The flight paths (thin black curves) specified by the subjects in the high-level task, where the objective was to fly the aircraft over three targets: treeline,
site-1, and site-2. The frames (a), (b), (c), (d) show the flight paths with hit-counts = 3,2,1,0, respectively. A target was hit by a path if the target center (the red dots
for site-1, site-2, and the red curve for treeline) was within 250 m of some point along the path. The frames also show the points within 250 m of the target centers
(light-green regions), and the frame (a) shows the mean flight path (dashed blue curve) computed by averaging all paths with hit-count =3 in the time domain.

two subsets , and with equal pos-
terior probability. Similarly, in the case with discrete inputs,
the interface might choose paths to par-
tition into disjoint subsets such that each subset will have
equal posterior probability and the th subset will contain only
the paths that are ordered between and , where
are left-most and right-most paths in , respectively. Then, the
user might provide an input to indicate the subset that contains
their desired path.
4) Enabling Navigation in 3-D Space: In this paper, we as-

sumed that the robot was moving in a 2-D space. One way of
extending our approach to enable 3-D navigation might be as
follows. A space curve can be defined by its curvature , de-
termining how much turns left or right, and its torsion , de-
termining how much bends up or down, at each point along
the curve using Frenet–Serret frame [25]. In order to model de-
sired paths, our approach might use an alphabet consisting of

pairs corresponding to curves of fixed length with con-
stant curvature and torsion. Then, it might be possible to de-
sign a communication protocol that would rely on user’s ability
to compare space curves. This comparison might be based on
finding the first point at which two space curves differ, and then
observing if one of the curves has smaller curvature (i.e., turns
more left), or torsion (i.e., bends more down) than the other.
In order for our approach to find a real-world use case, we

need further developments that BCI community as a whole
needs to address. First, our interface must have a mechanism for
starting or stopping the navigation, which might be achieved by
using more input classes or different input paradigms. Second,
our interface demanded high cognitive load on users. In the
future, we might train our EEG decoding algorithm using addi-
tional data corresponding to a “rest” class and adjust the robot’s
speed based on the uncertainty the robot has about the desired
path so that users might take a break from providing inputs.
Third, our interface used a “locked-down” graphical display
to show feedback stimuli. In future work, we might consider
presenting feedback using an augmented reality display such as
a head mounted or virtual retinal display.
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