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Abstract— This paper presents an interface that allows a
human user to specify a desired path for a mobile robot in
a planar workspace with noisy binary inputs that are obtained
at low bit-rates through an electroencephalograph (EEG). We
represent desired paths as geodesics with respect to a cost func-
tion that is defined so that each path-homotopy class contains
exactly one (local) geodesic. We apply max-margin structured
learning to recover a cost function that is consistent with
observations of human walking paths. We derive an optimal
feedback communication protocol to select a local geodesic—
equivalently, a path-homotopy class—using a sequence of noisy
bits. We validate our approach with experiments that quantify
both how well our learned cost function characterizes human
walking data and how well human subjects perform with the
resulting interface in navigating a simulated robot with EEG.

I. INTRODUCTION

Our work is motivated by the design of non-invasive brain-
machine interfaces (BMIs) for the control of robotic systems
that include humanoid robots [1], [2], wheelchairs [3]–[6],
and other mobile robots [7], [8]. These interfaces translate
electroencephalograph (EEG) recordings of brain activity
into desired commands for a robot, effectively enabling
people to control robots just by thinking. In most of these
interfaces, possible commands for the robot were either pre-
determined high-level tasks (e.g., go to kitchen) that the
robot could perform autonomously [1], [4], or were low-level
steering tasks (e.g., turn left/right) that defined the moment-
to-moment course of the robot [2], [3], [6]. In particular, the
level of task specification was an important design choice and
it was critical to the overall performance of the interface [9].
In this work, we take a different approach and allow users
to specify a human-like path for the robot with a sequence
of binary commands.

We have drawn considerable inspiration from the success
of [5] in enabling a human user to drive a robotic wheelchair
indoors on level ground using EEG signals. Their approach
was to drive the wheelchair autonomously along a sequence
of locations chosen by the human user. The interface showed
the map of the environment visible from the wheelchair, and
the user chose a location from a set of locations indicated on
this map. Although their interface was successful, the paths
specified by the user did not correspond to paths that humans
might prefer for indoor navigation, and the navigation was
slow in comparison to conventional input devices, e.g., a
joystick.
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Fig. 1. Our interface for navigating a mobile robot in a planar workspace
with polygonal obstacles. The interface allows a human user to specify
a desired path, which corresponds to a (local) geodesic from the robot’s
current location to a boundary point. The interface provides feedback by
showing its estimate of the user’s desired path (called estimated path). The
user provides binary inputs by determining the (clockwise) ordering of their
desired path with respect to the estimated path. See text for details.

It is necessary to restrict the space of all possible paths
the user can specify because we cannot describe arbitrary
paths with a finite number of inputs. In previous work [10],
we made a heuristic choice, and used an ordered symbolic
language to represent paths of piecewise-constant curvature.
However, this decision made it hard to incorporate certain
types of statistical information. For example, how does path
likelihood vary in the presence of obstacles? Recently [11],
we suggested a more systematic approach, observing that the
principle of optimality could be used to generate a compact
representation of all paths likely to be seen in the context
of a particular application. We restricted our scope to only
paths that are locally-shortest and showed that the space of
all such paths having length that is bounded and locally-
minimal in a polygonal workspace with polygonal obstacles
is homeomorphic to a unit disk. This homeomorphism was
used to design an interface by which the user can, with
vanishing error probability, specify a locally-shorted path to a
boundary point of the workspace. Although the applicability
of this approach to the design of a BMI for navigating a sim-
ulated robot amidst obstacles was considered, its scope was
limited because the chosen optimality principle (minimizing
length) caused paths to touch obstacles, and user inputs were
provided by a keyboard rather than by EEG signals.

This paper presents an interface that allows users to nav-
igate a mobile robot along human-like paths in a simulated
environment with input only from EEG (Fig. 1). In particular,
we represent a desired path as a (local) geodesic with
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respect to a cost function that is defined so that each path-
homotopy class contains exactly one geodesic (Section II-A).
We recover such a cost function from a dataset of human-
demonstrated paths using max-margin structured learning
(Section II-B). We represent path-homotopy classes in a
compact way by noting that the space of all path-homotopy
classes originating from a fixed starting point is homeo-
morphic to the unit disk (Section II-C). This representation
is used to design a feedback communication protocol that
allows a user to select a desired geodesic, with vanishing
error probability, using a sequence of noisy binary inputs
(Section II-D). Section III describes the implementation of
our interface for navigating a simulated robot with EEG. We
then describe the experiments used to learn the cost function
from a dataset of human-walking paths (Section IV-A), and
the experiments performed to evaluate the performance of
the resulting interface in navigating a simulated robot using
EEG (Section IV-B). Section V concludes the paper.

II. METHODS

A. Representing Desired Paths as Geodesics

We represent desired paths as geodesics that are locally-
optimal solutions to

minimize
∫ t=T

t=0

g(γ(t))dt

s.t. γ(t) ∈ Qfree,∀t ∈ [0, T ]

γ(0) = q0 and γ(T ) = q1,

(1)

where γ : [0, T ] → Qfree is a continuous function, Qfree is
the free configuration space, g : Qfree → R+ is a given
cost function, q0 and q1 are given start and end configu-
rations, respectively, and T is the free final time. To make
things concrete, we consider a point robot moving through a
bounded planar workspace with polygonal obstacles, which
has Qfree ∈ R2. Obstacles induce a topological structure to
paths in Qfree. We say that two paths γ and γ′ are homotopic
if we can continuously deform one to another. The homotopy
defines an equivalence relation and this relation divides paths
into path-homotopy classes. We assume that a cost function
g : Qfree → R+ is given so that there is a unique geodesic
for each path-homotopy class. This allows us to represent
a geodesic only by a path-homotopy class which may be
defined using a (reference) path π : [0, 1] → Qfree with
π(0) = q0 and π(1) = q1, and denoted [π].

B. Learning an Optimality Principle from Data

In order to generate human-like paths, we learn a cost
function so that the resulting geodesics will resemble paths
that humans prefer in navigating a mobile robot (e.g., a
wheelchair) amidst obstacles in a target path-homotopy class.
Our approach is to use maximum-margin structured learning
(MMSL) [12], [13] to recover such a cost function from a
training set D = {γi}Ni=1 where γi : [0, T ] → Qfree is a
human-demonstrated path. We assume that the cost function
g : Qfree → R+ takes the form of g(q) = wT c(q) where
w is a non-negative weight vector in a convex parameter

space W , and c = [c1, . . . , cn] is a given vector-valued
feature function, with each ci : Qfree → R+. The total
cost of a path γ : [0, T ] → R2 in Γ can be expressed as
J(γ) =

∫
wT c(γ(t))dt = wT f(γ), where f : Γ → R+ is

the feature sum along the path γ. In MMSL, we introduce
a margin that scales with the loss of choosing an alternative
γ ∈ Γ in place of the demonstrated example γi, and denote
it by the function Li : Γ → R+, where Li(γ) > 0 for all
γ 6= γi, and Li(γi) = 0. The underlying problem is to learn
weights w ∈W so that

wT f(γi) ≤ wT f(γ)− Li(γ), ∀y 6= yi, ∀i,

which requires the cost of an alternative γ to be larger than
the cost of the example γi. Maximizing margin subject to
these constraints is equivalent to the convex program

min
w∈W,ζi∈R

1

N

N∑
i=1

ζi +
λ

2
‖w‖2

s.t. wT f(γi) ≤ min
γ∈Γ

{
wT f(γ)− Li(γ)

}
+ ζi, ∀i,

where { ζi }Ni=1 are the slack variables, and λ ≥ 0 is a
constant that trades off between a penalty on constraint
violations and margin maximization. This program can be
solved using a subgradient descent algorithm [12], [13].

C. A Compact Representation for Path-Homotopy Classes

In order represent a path-homotopy class in a compact
way, we construct a homeomorphism between the space of
all path-homotopy classes and the unit disk. Our approach
is to use the homeomorphism, previously derived in [11],
between the space of all locally-shortest paths originating
from a fixed point and the unit disk. This homeomorphism
is constructed recursively by iterating through regions of the
workspace that become visible after each iterative movement
of the robot along the shortest path segment. Such a region
V ∈ Qfree has a boundary consisting of polygonal chains in
the interior of Qfree, called extension edges, and polygonal
chains in the boundary of Qfree, called boundary edges. The
algorithm embeds V into a cell of the unit disk, denoted
Ṽ , such that the boundary of Ṽ contains a chord for
each extension edge of V , and a circular arc on the disk
boundary for each boundary edge of V . This process is
illustrated in Fig 2, and described in [11].

The space of all path-homotopy classes in Qfree ∈ R2 with
a starting point at q is known as the universal covering space
Q̄ denoted by Q̄ = {[γ]|γ : [0, 1] → Qfree and γ(0) = q}.
We can think of Q̄ as the space formed by concatenating
the end points of all path-homotopy classes from q, hence
each point in Q̄ represents a unique path-homotopy class. Let
Q̄b ⊂ Q̄ be the set of path-homotopy classes that terminate
at a boundary point of the workspace. Since there is a
unique locally-shortest path in each path-homotopy class,
the homeomorphism derived in [11] gives us a one-to-one
mapping between Q̄ and the closed unit disk D1 = {x|x ∈
R2, ‖x‖ ≤ 1} such that the restriction of this mapping to Q̄b
is the boundary of the unit disk, denoted by S1.
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Fig. 2. One iteration of constructing a homeomorphism between locally-
shortest paths originating at x and the closed unit disk D1. Vx is the
visibility polygon of x, and Vp→q is the set of points that become newly
visible by moving from p to q. Their embeddings are Ṽx and Ṽp→q ,
respectively. Extension edges are in red, boundary edges are in blue.

There are three properties of this mapping that will allow
us to design an optimal feedback communication protocol
for selecting desired geodesics in Section II-D. Let Γ be
the space of all geodesics from a fixed starting point, , Γb
be the set of geodesics in Γ that terminate at a boundary
point, and φ : Γ → D1 be the homeomorphism between
Γ and D1. The first property is that any geodesic γb ∈ Γb
that crosses the sequence of extension edges e1, . . . , ei is
mapped to an angle θ = φ(γb) such that φ(γl) < θ < φ(γr),
where γl, γr are the geodesics that cross the sequence of
extension edges e1, . . . , ei−1 and terminate at an endpoint
of ei at the boundary. This allows us to efficiently query
the probability that a geodesic crosses a particular extension
edge. The second property is that any geodesic in Γ is a prefix
of some other geodesic in Γb. With this property, navigation
along any path γ ∈ Γ can be accomplished by carrying out
the navigation along the path γb ∈ Γb with prefix γ, and then
by stopping the navigation when the desired endpoint γ(1) is
reached. The third property is that we can induce an ordering
between the geodesics in Γb using their representation in S1.
We say that γ1 ∈ Γ1 is ordered to the left of γ2, denoted
γ1 < γ2, if and only if the clockwise angle from φ(γ1) to
φ(γ2) is smaller than the counterclockwise angle from φ(γ1)
to φ(γ2), as illustrated in Fig. 3. A human user may easily
determine the ordering of two geodesics in Γb because these
geodesics cannot cross each other in Q̄.

D. A Communication Protocol for Selecting Geodesics

In this section, we describe an optimal feedback com-
munication protocol that allows a human user to select a
geodesic γ∗ ∈ Γb, or equivalently the angle θ∗ = φ(γ∗),
with vanishing error probability, using a sequence of noisy
binary inputs. Such a protocol says how the user must choose
inputs and how the interface must provide feedback so that
E(|φ(γ̂k)−φ(γ∗)|)→ 0 as k →∞, where γ̂k is the estimate
of γ∗ after k user inputs. Here, we use the protocol derived
in [11] to communicate an angle across a binary symmetric
channel (BSC) with noiseless feedback. We model the noisy
input source as a BSC with crossover probability ε. At time
step k, the input to this channel is xk ∈ {0, 1}, where we
associate xk = 0 with the input “left” and xk = 1 with
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(b) Their representation in S1

Fig. 3. A set of geodesics starting at x and ending at the boundary are
shown in (a), their corresponding points in the unit circle S1 are shown in
(b). The intermediate points along the geodesics in (a) indicate the points
at which the geodesics cross an extension edge.

the input “right”. The output of the channel is yk ∈ {0, 1}
with P (Yk 6= Xk) = ε, where Yk, Xk are random variables
corresponding to channel input and output, respectively. We
assume that the BSC can provide noiseless feedback to the
user, which in our case corresponds to providing an estimate
γ̂ of the user’s desired path γ∗ to the user and assuming that
the user can determine with perfect accuracy whether or not
γ∗ < γ̂ according to the ordering defined in Section II-C.

Our protocol is as follows. Assume that at time
step k, the interface computed the posterior distribution
PΘ|Y k(θ|y1 . . . yk), where Θ ∈ S1 is the random variable
indicating the desired angle, and Yk = (Y1, . . . , Yk). First,
the interface finds a pair of angles (µk, µ̄k) that are opposite
to each other in S1, i.e., µ̄k = (µk+π) mod (2π), and that
the probability concentrated on the half circle from µk to
µ̄k is equal to the probability concentrated on the opposite
half circle from µ̄k to µk. The interface selects the angle
in (µk, µ̄k) with higher posterior density as the estimate
θ̂k, and provides it as feedback by showing the geodesic
γ̂k = φ−1(θ̂k). Then, the user selects the next input xk+1

as 1 if γ∗ ≥ γ̂k or as 0 otherwise. Finally, if yk+1 = 1
(the case yk+1 = 0 is analogous), then the interface applies
Bayes’ rule to update the posterior distribution as

PΘ|Y k+1

(
θ
∣∣y1 . . . yk+1

)
=

η ·

{
(1− ε) · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
if φ−1(θ) ≥ γ̂k

ε · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
otherwise,

(2)

where η is a normalizing constant. Then, the process repeats.

III. INTERFACE FOR NAVIGATING A SIMULATED
ROBOT WITH EEG

A. Our Approach for Navigation with Binary Inputs

In this section, we describe our algorithm for enabling
the navigation of the robot while the user is specifying
their desired path by following the communication protocol
derived in Section II-D. Let q0 ∈ Qfree be the robot’s
starting position, and Q̄ be the universal covering space
consisting of all path-homotopy classes with fixed start point
q0. At time step k, the interface obtains the noisy input
yk from the user and computes the posterior distribution
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(a) Intel pedestrian path prediction dataset (b) The recovered cost function
     













(c) Test paths and corresponding geodesics

Fig. 4. The dataset consisting of human walking paths is shown on a 525 by 325 map in (a), where black pixels denote obstacles, and white pixels
denote free space. The recovered cost function is shown in (b), where red pixels denote a high cost and blue pixels denote a low cost. The paths in the
test dataset (dashed blue curves) and the geodesics (solid blue curves) generated with the recovered cost function for each test path is shown in (c).

PΘ|Y k(θ|y1, . . . , yk). From this distribution, it generates the
estimate θ̂k ∈ S1 and the geodesic γ̂k = φ−1(θ̂k) that starts
at q0 and ends at a boundary point. The estimate θ̂k also
describes a path-homotopy class with an endpoint qf in Q̄.
Instead of displaying γ̂k as feedback, the interface displays
the geodesic π̂k from the robot’s current position q ∈ Q̄ to
qf ∈ Q̄. Let e be the first extension or boundary edge that
π̂ crosses in Q̄ (see Section II-C). The robot moves along π̂
until it crosses e when the posterior probability of the event
that the user’s desired path crosses e is at least 0.90. This
procedure is outlined in Algorithm 1.

Algorithm 1 Robot Navigation Algorithm.
1: let Q̄ be the universal covering space
2: while robot is not at a boundary point do
3: wait until noisy input yk is observed
4: evaluate PΘ|Y k and obtain θ̂k ∈ S1, γ̂k ∈ Γb
5: let q be the robot’s current position in Q̄
6: let qf be the point in Q̄ corresponding to θ̂k
7: display geodesic π̂k from q to qf in Q̄ as feedback
8: let e be the first edge that π̂k crosses in Q̄
9: if posterior probability of crossing e ≥ 0.90 then

10: command robot to move along πk until it crosses e
11: else
12: command robot to stop
13: end if
14: end while

B. Our Approach for Obtaining Binary Inputs through EEG

Our BMI was based on steady-state visually-evoked po-
tentials (SSVEP), a natural neural response to repetitive
flickering stimuli in the environment [14]. By providing
stimuli of known frequency patterns, it is possible to deter-
mine which stimulus the user is attending to. Our interface
displayed two stimuli that steadily flashed on a CRT monitor
at 8.67Hz and 12Hz. These frequencies were chosen because
they yield high signal-to-noise ratio and lie outside of the
range known to induce seizures [15]. EEG signals were
extracted from seven electrode sites across the occipital
region of the scalp, in particular PO7, PO3, PO4, PO8,
O1, OZ, O2, at impedances not exceeding 10kΩ, with a
reference measured at PZA [16]. These signals were acquired
using a 128-channel bioamplifier at 256Hz, bandpass-filtered

from 1Hz to 30Hz, and analyzed with BCI2000 [17] and
MATLAB using a three second sliding window. The signals
from each channel were filtered into four different spatial
representations using bipolar and Laplacian configurations
[18]. For each spatial filter, we computed a signal to noise
ratio (SNR) of each frequency of interest together with
its first harmonic. For each frequency, after discarding the
highest and lowest SNR values, the average of the remaining
two SNR values was obtained. A classification was made
when this average exceeded a threshold of 8. After each
classification, auditory feedback was provided to the user by
playing a unique sound to indicate observation of a “left” or
“right” input.

IV. EXPERIMENTS

A. Learning Cost Function from Data

We performed experiments to learn the cost function in
(1) using the Intel pedestrian path prediction dataset [19]
that consists of human walking paths recorded in an office
environment (Fig. 4a). Similar to the procedure in [19], a
black and white pixel map of the environment was generated,
with a pixel corresponding to a distance of 0.04 meters. Ten
cost features were defined for each pixel based on blurred
images of the pixel map with different levels of blurring. The
loss function, a measure of dissimilarity of a given path γ
from an example path γi, was computed by first assigning a
zero loss to all pixels that are within 7 pixels (0.28 meters)
of distance from γi, and constant loss to all other pixels, and
then by summing the loss values assigned to the pixels that
γ crossed over.

We observed that some paths in the dataset do not resem-
ble any optimal behavior that can be explained by our cost
features. We labeled such paths as outliers and removed them
from the dataset. In order to detect whether a path γi was
an outlier, we applied MMSL using γi as the only training
example to obtain a cost function gi, and computed the loss
of the geodesic from the start point γi(0) to the end point
γi(1) under the cost function gi. If this loss was non-zero, we
labeled the path γi as an outlier. Out of 166 paths, 100 paths
were found to be outliers, and the remaining paths were split
into a training set and a test set, each containing 33 paths.

The recovered cost function with MMSL using all paths
in the training set is illustrated in Fig. 4b. We empirically
verified that geodesics generated with respect to this cost
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Task-1
(a)

start

end

reference path

Task-2
(b)

start

end

Fig. 5. Description of the two experimental tasks. The goal was to navigate
the robot from start (blue dot) to the midpoint of the finish segment (red
boundary segment) by specifying a desired path homotopic to the reference
path (blue curve). Task-1 was very similar to the task used in [5], where
the reference path followed the dashed blue curve towards the end.

TABLE I
EXPERIMENT RESULTS FOR TASK 1

Subject A Subject B

Trial 1 Trial 2 Trial 1 Trial 2

Task success YES YES YES YES
Time-to-navigate (s) 177 188 142 138
Time-opt-ratio 1.69 1.79 1.35 1.31
Time-to-specify (s) 143 102 117 99
Input accuracy 0.83 0.82 1.0 0.95
Input latency (s) 3.4 3.7 6.2 5.0
ITR (bits/min) 6.04 5.19 9.68 8.56

function in each path-homotopy class were unique. For eval-
uation, we computed the loss of the geodesics corresponding
to each training and test path. In the training set, 45% of
the geodesics had zero-loss and in the test set, 55% of the
geodesics had zero-loss. The results (Fig. 4c) suggest that we
can approximate human walking paths with zero-loss by a
geodesic curve in about half of the cases, and the recovered
cost function generalizes well to new cases.

B. Using the Interface to Navigate a Simulated Robot

In order to quantify the performance of our interface
for navigating a simulated robot with EEG, we performed
experiments with two able-bodied subjects that has no prior
experience in SSVEP-based BMIs. Each subject completed
two trials of two unique navigation tasks (Fig. 5). The goal in
each task was to navigate the robot from its start position to
a goal position in the boundary by specifying a desired path
homotopic to a target reference path. In task-1, we simulated
the environment used in [5] to evaluate their EEG-based
BMI for navigating a physical wheelchair. Our reference path
was very similar to theirs except that our path terminated in

Task 1
(a)

(b)

Task 2

Fig. 6. The actual paths (thin curves) followed by the mobile robot
compared to the geodesic homotopic to the reference path (thick blue curve).
The black curves correspond to the resulting paths from the successful trials.
The red curve corresponds to the resulting path obtained in the failed trial.

TABLE II
EXPERIMENT RESULTS FOR TASK 2

Subject A Subject B

Trial 1 Trial 2 Trial 1 Trial 2

Task success YES NO YES YES
Time-to-navigate 253 - 257 314
Time-opt-ratio 1.62 - 1.65 2.01
Time-to-specify 138 - 165 264
Input accuracy 0.91 0.82 1.0 0.88
Input latency 4.3 8.1 6.9 8.0
ITR (bits/min) 7.86 2.37 8.70 3.53

the boundary rather than in the free space. In task-2, we
simulated the environment in which the dataset of human
walking paths used in Section IV-A was produced.

We used the following metrics to evaluate the performance
of our brain-machine interface:

• Task success: whether the robot successfully navigated
along a path that was homotopic to the reference path.

• Time-to-navigate: the duration of the task in seconds,
if the task was successful.

• Time-opt-ratio: the ratio of time-to-navigate to the time
it would take for the robot to continuously move along
the geodesic homotopic to the reference path, which was
105 seconds for task-1, and 156 seconds for task-2.

• Time-to-specify: the time it took for the posterior
probability of choosing a geodesic with an end point
in the finish segment to exceed 90% probability.

• Input accuracy: the fraction of inputs that were cor-
rectly classified before time-to-specify.

• Input latency: the average time in seconds between two
consecutive inputs.

• ITR: the information transfer rate that gives the number
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of reliable bits obtained from the user per minute.

Results show that our interface enabled subjects to suc-
cessfully complete the navigation tasks in 7 of the 8 trials.
The actual paths followed by the mobile robot are shown
in Fig. 6, and the performances obtained in task-1 and task-
2 are reported in Table I, and II, respectively. Remarkably,
in all successful trials, the actual paths were very close to
the geodesics homotopic to the reference paths. Subjects
obtained between 5 and 10 bits/minute ITR in all trials except
in trial-2 of task-2, where both subjects reported being tired
and unable to focus their attention during the entire time.
This might explain why subject A failed in trial-2 of task-2.

In task-1, the average time-to-navigate was 2.7 minutes,
which is significantly less than the average time-to-navigate
of 9.5 minutes reported in [5]. However, the fact that they
used a different paradigm (P300) for obtaining inputs from
EEG than ours (SSVEP), the fact that they used a physical
wheelchair rather than a simulated mobile robot, and the fact
that they did not rely on a given map of the environment
prevents us from making a true comparison. For both tasks,
time-opt-ratio was between 1.3 and 2.0 (time-opt-ratio of
[5] was 5.4), which means that the navigation time with our
interface was less than twice the time it would have taken the
robot to move continuously along the geodesic homotopic to
the reference path. It is important to note that the average
gap between time-to-specify and time-to-navigate was 1.0
minutes, meaning that the subject specified a geodesic with
an end point in the finish segment of the task about one
minute before the robot actually moved to the midpoint of
the finish segment. This gap was partly because between
two consecutive user inputs, the robot was only allowed to
move until it crossed an extension edge (see Algorithm 1).
In future work, the robot might be allowed to move along a
longer prefix of the specified geodesic and the speed of the
robot might be adjusted to reduce this gap.

The video submission demonstrates our experimental
setup and recorded screencasts from subject A’s trial-2 of
task-1 and trial-1 of task-2.

V. CONCLUSION

This study demonstrated an interface that allows users to
navigate a robot through a planar space containing obsta-
cles using only the inputs from an SSVEP-based BMI. By
representing desired paths as geodesics under a cost function
recovered from human-demonstrated paths, we enabled users
to navigate this space in a smooth human-like manner with
only binary inputs. Our results suggest that not only can users
navigate in this manner, but that they can do so with a very
high success rate. Our subjects navigated the robot along two
experimental paths in less than twice the time it would have
taken the robot if informed of the path explicitly before the
task. In the future, we would like to use a 3-class SSVEP-
based BMI to enable the user to start or stop the robot at
their will. Optimization of the robot’s control behaviors and
our signal classification algorithm may allow us to further
improve the performance.
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