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Abstract— The space of all possible paths through a finite-
dimensional configuration space is infinite-dimensional. Never-
theless, paths taken by “real” robotic systems often cluster on
a finite-dimensional manifold that is embedded in this infinite-
dimensional space and that is governed by a principle of
optimality. We take advantage of this property to enable a
human user to efficiently specify a desired path for a robot
moving through a planar workspace with polygonal obstacles
using a sequence of noisy binary inputs, as might be derived
from a brain-machine interface. First, we show that the space
of all such paths having length that is bounded and locally
minimal is homeomorphic to the unit disk. Second, we note
that any path mapped to the interior of this disk is a subset of
some other path mapped to its boundary. Third, we provide an
optimal communication protocol by which the user can, with
vanishing error probability, select a point on this boundary.
Finally, we validate our approach in preliminary experiments
with human subjects.

I. INTRODUCTION

Our work is motivated by the design of brain-machine
interface systems [1]. These systems translate measurements
of brain activity into commands for a prosthetic device,
effectively allowing people to control robots just by thinking.
Traditional applications include text entry and point-to-point
cursor movement but a growing array of future applica-
tions include the control of artificial limbs [2], humanoid
robots [3], and wheelchairs [4], [5]. In each case, the role of
the interface is to facilitate quick and reliable communication
of intent, i.e., a description of what the user wants the robot
to do. Because of the inherent uncertainty in measurement
and interpretation of brain activity, this process requires a
compact representation of possible intent that lends itself to
statistical inference.

As one example, in previous work we enabled a human
pilot to fly an unmanned aircraft with input only from an
electroencephalograph (EEG), which was used to distinguish
between left- and right-hand motor imagery in the brain [6].
These correlates of motor intent came at a low rate and with
a low signal-to-noise ratio, e.g., a single bit at 1 Hz with
a 10% crossover probability. It was not appropriate to map
each input to a control signal as would have been done with
a more traditional interface like a joystick. Instead, it took
an entire sequence of inputs, prompted by feedback from
annotated onboard video, to tell the aircraft what to do. In
this case, “what to do” meant a desired path to be followed by
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an autopilot. A key question, therefore, was how to represent
this path.

The reason this question is hard to answer is that the
space of all possible paths through a finite-dimensional
configuration space is infinite-dimensional. In other words,
there exists no finite set of parameters describing elements
of this space. We are required to make a choice, and whether
we decide to use a parametric representation (e.g., in terms
of motion primitives [7]–[10] or a non-parametric representa-
tion (e.g., in terms of a gaussian process [11]), we still lose
the ability—in practice—to describe arbitrary paths. What
this means is that, in the context of a particular application,
different representations may lead to very different levels of
performance.

In [6], we made a heuristic choice, using an ordered
symbolic language to represent paths of piecewise-constant
curvature. This choice allowed us to design an interface that
was optimal in the sense that it allowed users to specify
paths in our language with vanishing error probability in
the number of binary inputs. However, this choice restricted
the paths that could be flown by the aircraft and made it
hard to incorporate certain types of statistical information,
for example about how path likelihood varies in the presence
of obstacles.

In this paper we suggest one way to make the choice
of representation more systematic. We proceed from the
observation that, although the space of all paths is infinite-
dimensional, paths taken by robots of interest often cluster
on a finite-dimensional manifold that is embedded in this
space and that is governed by a principle of optimality. This
principle of optimality can be used to generate a compact
representation of all paths likely to be seen in the context of
a particular application.

To make things concrete, in this paper we will consider
a point robot moving through a planar workspace with
polygonal obstacles. The configuration space of this robot
is Q = R2. The free space, consisting of all configurations
that do not place the robot in collision with obstacles, is
Qfree ⊂ Q. A path is a continuous function f : [0, 1] → Q.
We call this path feasible if its range lies entirely in Qfree,
i.e. if f(t) ∈ Qfree for all t ∈ [0, 1]. Given some initial
configuration qinitial ∈ Qfree, we denote the space of all
possible paths for which f(0) = qinitial by CQ[0, 1]. We
call CQ[0, 1] the solution space, inspired by the notion that
every f ∈ CQ[0, 1] is a solution to some classical path
planning problem [12]–[14]. To generate a representation of
the solution space, we will assume that human users choose
paths that avoid obstacles and that are locally shortest.
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Proceeding from this assumption, in Section II we show
that the set of all feasible paths in CQ[0, 1] having length that
is bounded and locally minimal is homeomorphic to the unit
disk. We also note that any path mapped to the interior of this
disk is a subset of some other path mapped to its boundary.
Then, in Section III we provide an optimal communication
protocol by which the user can, with vanishing error prob-
ability, select a point on this boundary using a sequence of
noisy binary inputs. We also show the resulting interface and
validate our approach in preliminary experiments. Finally, in
Section IV we briefly discuss the broader context of our work
and present opportunities for future inquiry.

II. A COMPACT REPRESENTATION OF
LOCALLY-SHORTEST PATHS

In this section, we show by direct construction that the
set of all feasible paths in CQ[0, 1] having length that is
bounded and locally minimal is homeomorphic to the unit
disk. First, we review the structure of shortest paths in
a planar workspace with polygonal obstacles—commonly
known as a polygonal domain—and describe efficient ways
to compute this structure [14]–[16]. Then, we apply these
results to define a smooth bijection between the set of
locally-shortest paths with bounded length and the set of
points in a closed unit disk.

A. Visibility and the Structure of Shortest Paths

We call a configuration free if the robot at this configu-
ration is not in contact with an obstacle, and call it semi-
free if the robot touches an obstacle. We define Qfree as
the set of free and semi-free configurations. If Qfree is a
simple polygon, as it is in the absence of obstacles, there
is a unique shortest path between any two configurations. If
Qfree is a polygonal domain with h obstacles, the number
of locally-shortest paths can be exponential in h. This is
because obstacles induce a combinatorial structure to the
paths. We say that two paths π and π′ are homotopic if
we can continuously deform one to another. The homotopy
defines an equivalence relation and this relation divides paths
into homotopy classes. For each homotopy class, there is a
unique shortest path. We say that a path is globally-shortest
if it has the shortest length among all locally-shortest paths.

The shortest paths in a polygonal domain P has a very
special structure. We say that two points p, q in Qfree are
visible if there exist a line segment between p and q in Qfree.
A vertex v of P is reflex if the interior angle between its
two incidents edges is greater than π. Let VR be the set of
reflex vertices in P . The shortest path from qinitial to qfinal
is always a polygonal line in Cfree with vertices chosen
from the set V = VR ∪ {qinitial, qfinal}. Its first edge is a line
segment from qinitial to a reflex vertex and its last edge is a
line segment from a reflex vertex to qfinal. All intermediate
edges are line segments between the visible reflex vertices,
and they either lie in the boundary of P (a boundary edge) or
they are tangents to P at both endpoints (a bitangent edge).
The graph containing the boundary and bitangent edges of
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Fig. 1. The visibility polygon of a point x, denoted by V (x), is shown
in light gray. The way points from x are marked with black diamonds, and
the extension points are marked with empty diamonds. The extension edges
are shown in green, and the boundary edges are shown in blue.

P between the visible reflex vertices is called a shortest-
path roadmap G, or a reduced visibility graph. This graph
representation allows us to obtain globally-shortest paths
from qinitial to qfinal efficiently. We extend G to contain edges
from {qinitial, qfinal} to the reflex vertices that are visible, and
then we do a graph search from qinitial to qfinal in the resulting
graph. If multiple globally-shortest path queries from a fixed
qinitial are going to be performed, we can construct a shortest-
path map using the continuous Dijkstra method. This map
is a planar decomposition of Qfree into cells such that all
globally-shortest paths ending in the same cell are identical
except at their last polygonal segment. Once constructed, this
map representation allows us to obtain the globally-shortest
paths from qinitial without searching a graph. Another version
of the shortest path problem is to find the locally-shortest
path in a given homotopy class. The homotopy class can be
expressed as a sequence of triangles in a triangulation of P .
In this case, the shortest path can be computed efficiently
using the funnel algorithm. See [14]–[16] for details.

For a polygonal domain P , the region of P visible from
a source point x is called the visibility polygon of x, and
denoted by V (x), see Fig. 1. The visibility polygon can be
computed in time O(n log n) if P has n edges. We refer
a line segment in V (x) that crosses the interior of P as
an extension edge. For each extension edge, we refer its
vertex that is closest to x as a way point and its other vertex
as an extension point. The way points are vertices through
which shortest paths originated from x can cross. We refer
to a polygonal chain between two extension edges in the
boundary of V (x) as a boundary edge. This allows us to
represent the boundary of V (x) as a sequence of extension
and boundary edges.

Our representation for locally-shortest paths is most
closely related to gap navigation trees [17]. It is constructed
from the sequence of critical events occurring in the robot’s
visibility region as the robot moves in the environment. This
tree structure can be used to solve several visibility-based
tasks including locally-optimal navigation.
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Fig. 2. Embedding the visibility polygon V (x) of Figure 1 to a region
(cell) of the unit disk, denoted by Ṽ (x). The boundary edges of V (x)
become circular arcs along the disk boundary and the extension edges of
V (x) become the chords of the unit disk.

B. Locally-Shortest Paths as Points in the Unit Disk

We construct a homeomorphism between the set of all
locally-shortest paths (with bounded length) originating from
x ∈ Qfree, denoted by Π(x), and the (closed) unit disk,
denoted by D1. We define Πb(x) ⊂ Π(x) to be the set
of locally-shortest paths in Π(x) that terminate at a semi-
free configuration (a boundary point). Our objective is to
construct a homeomorphism f : Π(x) → D1 such that the
restriction of f to Πb(x) is the boundary of the unit disk,
i.e. the unit circle S1.

We first map the locally-shortest paths ending in the
visibility polygon of x, V (x), to a closed planar region (cell)
of D1, denoted by Ṽ (x). The cell Ṽ (x) is bounded by a
set of chords in D1 and a set of circular arcs along the disk
boundary. We have a chord for each extension edge in V (x),
and we have a circular arc for each boundary edge in V (x).
The cyclic ordering of the chords and circular arcs in Ṽ (x)
matches to the cyclic ordering of the edges of V (x). An
embedding of V (x) of Figure 1 to Ṽ (x) is shown in Figure 2.
The shortest paths ending at the boundary edges of V (x) map
to the points along the disk boundary, and the shortest paths
ending at the extension edges of V (x) map to the points on
the chords.

The algorithm then iterates over the way points of V (x).
Let Vx→wi

be the set of points that become newly visible by
going from x to a way point wi. All shortest paths ending at
a configuration q ∈ Vx→wi

contain the straight segment from
x to wi in their prefix. Vx→wi

can be computed by cutting the
visibility polygon of wi, V (wi), by the extension edge from
wi in V (x). The embedding of Vx→wi is the cell adjacent
to the chord in Ṽ (x) that corresponds to the extension edge
from wi. We denote this cell by Ṽx→wi

. Its boundary, like
Ṽ (x), consists of a circular arc for each boundary edge, and
a chord for each extension edge. As the algorithm moves to
a new way point, a new set of points become visible and
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Fig. 4. A set of locally-shortest paths starting at x and ending at the
boundary is shown on the left, and their corresponding location in the
boundary S1 of the unit disk is shown on the right.

we map them to the cells that are adjacent to the chords
corresponding to extension edges of the previous visibility
region. This process is illustrated in Figure 3.

We can map the interior of Vp→q to the interior of Ṽp→q

by doing a triangulation of Vp→q and matching triangles in
Vp→q to the cells of Ṽp→q that are either bounded by three
chords or bounded by two chords and a circular arc. Any
point in the interior of Ṽp→q represent a path π ∈ Π(x)
that terminate in the interior of Vp→q . Likewise, any point
in the boundary of Ṽp→q represents a path π ∈ Πb(x) that
terminates in the boundary of Vp→q . Figure 4 shows a set of
paths in Πb(x) and their mapping to points in S1.

We can induce an ordering between the paths of Πb(x) by
considering their representation in the unit disk, as defined
by the mapping fb : Πb → S1. Given two paths π1 and π2 in
Πb(x), we say that π1 is ordered to the left of π2, π1 < π2,
if and only if the clockwise angle from fb(π1) to fb(π2)
is smaller than the counterclockwise angle from fb(π1) to
fb(π2) (see Fig. 4). We use this property in the next section
to obtain an efficient scheme for choosing a particular path
π in Πb(x).

III. APPLICATION TO A HUMAN-ROBOT
INTERFACE

In this section, we present an interface that enables a
human user to efficiently specify a desired path for a robot
moving through a planar workspace with polygonal obstacles
using a sequence of noisy binary inputs, as might be derived
from a brain-machine interface. First, we use the compact
representation of paths from Section II to formulate the
problem of interface design as a communication problem.
Then, we apply tools from feedback information theory to
derive an optimal communication protocol. Finally, we test
a preliminary implementation of the resulting interface in
simulation (also see the attached video).

A. Interface Design as a Communication Problem

Our goal is to design an interface that allows a human
user to specify a desired path with a sequence of noisy
binary inputs. We may cast this as a communication problem
by making the following three choices: (1) to use locally-
shortest paths ending at the boundary as desired paths for the
mobile robot; (2) to use a classifier to obtain binary (“left”
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Fig. 3. Three iterations of constructing a unit disk representation of locally-shortest paths. The top row shows the set of points that become newly visible
as the algorithm iterates over the way points. The bottom row shows the embeddings of these visibility regions in the unit disk. Vx is the visibility polygon
of x, and Vp→q is the set of points that become newly visible by moving from p to q. Their embeddings are Ṽx and Ṽp→q , respectively.

or “right”) commands from the user asynchronously; and (3)
to use a graphical display to provide feedback to the user.

Our first choice (use locally-shortest paths to boundary)
allows us to define the user’s objective as specifying a real
number in S1. This choice does not restrict the possible paths
for the mobile robot to only paths that end at the boundary.
Assume that the user can stop the robot by using a different
command or a different input mechanism. Then, the path
followed by the mobile robot can be any locally-shortest
path. Our second choice (use a classifier to obtain binary
commands) allows us to model the noisy input source as a
binary symmetric channel (BSC) with crossover probability
ε. The input to this channel is xk ∈ {0, 1}, where we
associate xk = 0 with the command to “choose left” and
xk = 1 with the command to “choose right”. The output
of this channel is yk, where P (yk|xk) = ε if yk 6= xk and
P (yk|xk) = 1−ε otherwise. Our third choice (use a graphical
display) allows us to assume that the BSC can provide causal
noiseless feedback, in this case expressed as a candidate path.

With this abstraction, we can reformulate the problem of
interface design as the problem of constructing an optimal
communication protocol for transmitting a message point
θ∗ ∈ S1. In the next section, we derive a communication
protocol that is both optimal and easily implementable by a
human user.

B. Optimal Communication Protocol

Our goal here is to ensure a vanishing probability of error
in transmitting the desired path represented by a message
point θ∗ that is assumed to be drawn uniformly at random
from S1, the set of angles between [0, 2π). In the presence of

feedback, it is possible to significantly reduce the complexity
of the protocol and significantly increase the rate at which
error probability decreases (even though the capacity remains
constant). This is achieved by a posterior matching scheme
[18] that admits exponential decay in the probability of
error in transmitting θ∗ as we feed binary commands to
the channel. It describes a recursive framework to construct
optimal feedback communication protocols. For a binary
symmetric channel, we can construct such a protocol as
follows: Assume that after some time step k, the interface
computed the posterior distribution PΘ|Y k(θ|y1 . . . yk). First,
the interface finds the median pair (µk, µ̄k), a pair of angles
with the following property:

µ̄k = (µk + π) mod (2π),

PΘ|Y k(µk ≤ Θ < µ̄k) = PΘ|Y k(µ̄k ≤ Θ < µk) = 0.5.

This says that µk and µ̄k are opposite angles in S1, and
the probability concentrated on the half circle from µk to
µ̄k is equal to the probability concentrated on the opposite
half circle from µ̄k to µk (see Fig. 5). The interface selects
the median with higher posterior density as the estimate θk,
and provides it (expressed as a locally-shortest path in the
graphical display) as feedback to the user. Then, the user
selects the next input xk+1 as 1 if θ∗ ≥ θk or as 0 otherwise.
Finally, if yk+1 = 1 (the case yk+1 = 0 is analogous),
then the interface applies Bayes’ rule to update the posterior
distribution as
PΘ|Y k+1

(
θ
∣∣y1 . . . yk+1

)
=

η ·

{
(1− ε) · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
if θk ≤ θ < θ̄k

ε · PΘ|Y k

(
θ
∣∣y1 . . . yk

)
otherwise,

(1)
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Fig. 5. The placement of θ ∈ S1 to the boundary of the unit disk. (0, π)
is a possible median pair for the uniform distribution over S1. Each median
divides S1 into a left half-circle and a right half-circle.

where η is a normalizing constant. The new estimate θk+1

is computed from the median pair of this distribution (see
Fig. 6). Remarkably, this scheme is not only optimal but
also easy for a human user—the “encoder”—to implement.
Assume a graphical display shows the user the locally-
shortest path γk represented by θk (a point on the boundary
of our unit disk representation). Then, the user only has to
decide if the desired path is ordered to the left (“choose left”)
or to the right (“choose right”) of the candidate (see Fig. 6).
In our preliminary interface, described in the next section,
we use this scheme to allow users efficiently specify desired
paths for a mobile robot.

C. Preliminary Implementation of the Resulting Interface

We built an interface based on simulation to validate our
approach for specifying desired paths. We considered two
applications. In the first application (static path selection),
the user chooses a locally-shortest path π∗ ∈ Πb(x) from a
given starting point x . The interface displays its estimate
of the user’s desired path πk ∈ Πb(x) in each step k. The
user provides a “left” command if π∗ < πk, or a “right”
command otherwise. In the second application (dynamic path
selection), an omnidirectional robot navigates while the user
is specifying a path π∗ ∈ Πb(x). In this case, the interface
operates as follows: First, it obtains the estimate path πk from
its observation of binary commands, like before. Second, it
computes the locally-shortest path from the robot’s current
state q to the terminal point of πk. Third, it displays this path
to the user. In this case, the user’s policy does not change.
The ordering between the paths is still preserved (defined by
the unit disk representation of Π(x)) and it is intuitive for the
users to determine. This application is illustrated in Fig. 7.

We demonstrate the preliminary interface in the attached
video. In the first part, we show the unit disk representation
for a polygonal workspace. We illustrate how the paths
change in the workspace as we move towards left and
right on the boundary of the disk. In the second part, we
demonstrate the static path selection task, where the user
provides left or right inputs to specify a target path γ∗ (shown
in the display) for a stationary robot. During the execution
of the task, the last input yk provided by the user and the
number of inputs obtained so far, k, are shown in the video.

γ0

γ1

γ2

γk

Fig. 7. The four snapshots illustrating the dynamic version of the interface,
where the mobile robot navigates while the user is specifying their desired
path. The candidate path (blue) and the actual path followed by the mobile
robot (black) are shown. The user compares their desired path (not shown)
to the candidate path and provides a “left” or “right” command. At first,
the interface shows γ0. Upon receiving a “right” command, it updates the
candidate path to γ1. In the next step, after a “left” command, the path
becomes γ2. The last frame shows an intermediate step.

After each input, the interface updates a posterior distribution
over S1 and computes the median θk. The value of θk and
the shortest path γk that it represents are displayed in the
video. As we receive inputs from the user, observe that γk
converges to the target path γ∗, and the median θk converges
to θ∗. In the third part, we demonstrate the dynamic path
selection task, where the user navigates an omnidirectional
robot amongst obstacles. In this case, the robot moves at a
fixed speed along the path πk corresponding to the current
median θk. The interface displays shortest paths from its
current state to the boundary point represented by θ. In this
task, the user cannot specify the target path correctly. This
is because the robot changes its course immediately if the
line segment it is following changes after a user input. In
order to avoid frequent changes in the course of the robot in
practice, we may start the navigation task after observing a
small number of inputs from the user.

IV. CONCLUSION

We presented a compact representation for locally-shortest
paths and used this representation to enable a systematic
way of designing human-robot interfaces for specifying a
desired path with noisy and low-bandwidth input devices.
First, we noted that the paths encountered in “real” robotics
systems are often governed by a principle of optimality.
This motivated us to restrict the set of all possible paths
for the robot to the space of all locally-shortest paths from
a starting point. Second, we constructed a homeomorphism
between this finite-dimensional space and the unit disk. This
representation allowed us to represent any locally-shortest
path ending at the boundary of the workspace as a point in
the unit circle. Third, we provided an optimal communication
protocol that allowed the user to specify a point in S1,
and correspondingly a locally-shortest path, by doing a
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Fig. 6. The communication protocol between the user and the interface to a mobile robot for specifying a locally-shortest path. The user provides binary
commands to specify the desired path γ∗. The interface maintains a probability distribution over S1, and computes the median pair. The graphical display
shows the locally-shortest path corresponding to the median with the higher probability density. In the initial step, shown in the first frame, the posterior
is uniform and its chosen median µ0 is displayed as the path γ0. Upon observation of a “choose right” command, the likelihood of paths in the right
half-circle of µ0 are increased. As a result, the displayed path moves to the right of γ0, as shown in the second frame. Similarly, the third frame shows
the new posterior and the corresponding path after an observation of “choose left” command.

simple comparison between two paths. Experiments with a
preliminary interface showed that this approach is feasible.

We believe that it is important to characterize the space of
solutions to a motion planning problem. In the application we
considered it was essential to obtain a compact representation
of this solution space in order to specify an element of
it efficiently. Although we considered locally-shortest paths
here, our approach might be applicable in more general
settings. In future work, we would like to consider geodesics
in the presence of a cost function. One approach is to use
potential field functions to make paths less likely to become
close to obstacles or to make them arrive to possible goal
locations quickly.

One of our current goals, as future work, is to use our ap-
proach in a brain-machine interface to enable the navigation
of a mobile platform, or wheelchair amongst obstacles using
only EEG as input.
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