2010 International Conference on Pattern Recognition

A Probabilistic Language Model for Hand Drawings

Abdullah Akce
Department of Computer Science
University of lllinois at Urbana-Champaign
aakce2 @illinois.edu

Abstract

Probabilistic language models are critical to ap-
plications in natural language processing that include
speech recognition, optical character recognition, and
interfaces for text entry. In this paper, we present a
systematic way to learn a similar type of probabilistic
language model for hand drawings from a database of
existing artwork by representing each stroke as a se-
quence of symbols. First, we propose a language in
which the symbols are circular arcs with length fixed
by a scale parameter and with curvature chosen from
a fixed low-cardinality set. Then, we apply an algo-
rithm based on dynamic programming to represent each
stroke of the drawing as a sequence of symbols from
our alphabet. Finally, we learn the probabilistic lan-
guage model by constructing a Markov model. We com-
pute the entropy of our language in a test set as mea-
sured by the expected number of bits required for each
symbol. Our language model might be applied in fu-
ture work to create a drawing interface for noisy and
low-bandwidth input devices, for example an electroen-
cephalograph (EEG) that admits one binary command
per second. The results indicate that by leveraging our
language model, the performance of such an interface
would be enhanced by about 20 percent.

1 Introduction

We are motivated by the recent development of in-
terfaces for text entry that allow users to type at a high
rate even with a limited, low-bandwidth, and possi-
bly noisy input device. Of particular interest to us are
brain-computer interfaces for text entry. One success-
ful example is “Dasher” [9], which has been used with
an electroencephalograph (EEG) to type 1-2 words per
minute [4]. These interfaces work well because text has

This research was supported by awards NSF-CNS-0931871 and
NSF-CMMI-0956362-EAGER.

1051-4651/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPR.2010.35

109

Timothy Bretl
Department of Aerospace Engineering
University of lllinois at Urbana-Champaign
thretl@illinois.edu

two key properties that admit an efficient implementa-
tion. First, it is made up of symbols from a finite al-
phabet that allows users to alphabetize text. Second, it
admits a probabilistic language model that allows the
interface to perform inference.

In our own work, we are interested in exploring other
types of data entry that might be enabled by using an ap-
propriate ordered symbolic language. In particular, one
of our current goals is to enable users with limited input
devices to draw pictures. It is clear that the performance
of such an interface is proportional to the entropy of its
language, i.e., the expected number of bits required to
represent the data with respect to a language model. For
instance, the entropy of English text containing 26 let-
ters and the space character with respect to a uniform
model is log(27) = 4.76 bits per character. It can be re-
duced to 4.03 by using a unigram model, to 2.8 by using
a bigram model, and to about 2.0 by using prediction by
partial matching [7, 2].

In this paper, we propose a probabilistic language
model for hand drawings and perform an analysis of
its entropy. Our language, which we describe in Sec-
tion 2, assumes that drawings are composed of smooth
planar curves that we call strokes. Instead of charac-
ters, the symbols in our alphabet are circular arcs with
length fixed by a scale parameter and with curvature
chosen from a fixed low-cardinality set. In Section 3,
we give an algorithm based on dynamic programming
to approximate strokes by sequences of these symbols.
In Section 4, we describe how we construct a proba-
bilistic model from the resulting sequences. Finally, in
Section 5, we present the performance of our language
model by computing its entropy in two different sets of
drawings.

2 A language for smooth planar curves

Any smooth two-dimensional curve v: [0,L] —
R of arbitrary length L can be described by z’
cos, y = sinf, § = —k, where s is the arc-

IEEE
computer
psoue

ty

01
g2

etc.

011

Figure 1. An example alphabet used in our
language of smooth curves.

length, 6(s) is the angle of the tangent to the curve
at (z(s),y(s)), and k(s) is the curvature. The curve
is straight when x = 0, turns left when x < 0, and turns
right when x > 0. We can think of curvature as the in-
put to these ordinary differential equations. Given k(s)
and the initial conditions z(0), y(0), and 6(0), we can
integrate to find z(s), y(s), and (s).

Our language models a subset of curves for which s
is piecewise constant on intervals of length d. We
further restrict these curves by choosing each &; €
{e1,..., ¢} from a finite set. We associate a symbol o;
with the arc generated by ;. We define an alphabet
Y = (o1,...,0m) so that curves can be described con-
cisely as strings of symbols from 3. The language we
propose is most closely related to the idea of a chain
code in the literature [5]. For a chain code, the alphabet
contains eight cardinal directions that describe how to
move from one pixel to the next along the contour of
a shape. Our own language model for hand drawings
(Section 2) uses curvatures rather than cardinal direc-
tions as symbols, and is intended to generate smooth
curves rather than polygonal chains of pixels.

The sequential structure of our language allows a
user to “spell” curves, one symbol at a time, just like he
or she would spell text. Our language also admits an in-
tuitive lexicographic ordering. For two arcs 7;,v; € X,
we say that v; < «; if and only if ~; turns left at the
first point at which it differs from ;. This ordering al-
lows a user to “alphabetize” curves just like he or she
would alphabetize strings of text. It also allows the user
to search for curves with a binary input, just like he or
she would search for words in a dictionary by turning
pages forward or back. We employed this property in
a brain-machine interface to allow a human pilot to re-
motely teleoperate an unmanned aircraft by specifying
the desired path using only binary input [1].

110

Y1 = 0605011
start

Y2 = 060606 \

Y3 = 090109

Figure 2. Three smooth curves composed
from the symbols of Figure 1.

Figure 3. Projection to a point and orien-
tation on the curve .

3 From strokes to words

Given a stroke of a drawing represented as a two-
dimensional curve 7: [0, L] — R parameterized by arc-
length s, our objective is to find the sequence of sym-
bols constituting the word w € ¥* that best approxi-
mates v with respect to a dissimilarity cost. This ob-
jective is quite different than approximating a digital
curve with circular arcs as in [8, 6]. First, we require
the curvature of each arc to come from a finite alpha-
bet. Second, we enforce a smoothness constraint and
require that the consecutive arcs share the same tangent
angle. Third, endpoints of arcs do not generally lie on
the curve because we require all arcs to have the same
length.

We compute the dissimilarity between the curve ~
and a word w by first projecting the endpoints of the
symbols in w to points and orientations on . Let
S = {s1,82,...,8m} be a set of arc-lengths identi-
fying the locations of the projection points, and & =
{¢1,P2,...,¢61} be a set of quantized orientations.
proj(q) € S x ® maps a configuration ¢ = (z,y,0)
to the arc-length of its nearest projection point and to
the orientation ¢ € ® closest to §. For ex. in Figure 3,
the endpoint o} of a symbol o; is mapped to (s7, $3).

The dissimilarity cost is then given by

E(’Yvw =01 "UN) = Ze(aivf}/m)a
i=1

where 7, is the portion of the curve v from proj(o?)
to proj(o}) and e(71,72) is the sum-squared distance
between two curves y; and 5. Our algorithm attempts
to minimize this cost using dynamic programming. Let
TC(s, ¢) be the total cost of the best approximation to
~ from the start to a projection point at s € .S with quan-
tized orientation ¢ € ®. We assume that the following
recursive relation holds:

TC(s,¢) = {TC(s,¢') + SC(s, ¢',5,0) }

min
s'eS,¢'es

s'<s
where the step cost SC(s', ¢, s, ¢) is the minimum cost
of approximating the portion of -y from (s, ¢’) to (s, ¢)
by appending a single circular arc ¢ € X to the best ap-
proximating sequence for (s', ¢’). More precisely, the
step cost is given by

e(0,70)
inf

where ¢! (s’, ¢') is the endpoint of the best approximat-
ing sequence for (s’,¢’). The complexity of this algo-
rithm when implemented iteratively is O(|3||S||®|).

if proj(o') = (s, ¢)
otherwise

min

oEX
o%=q'(s',¢")

4 Learning the language model

Our language allows us to specify a stroke of a draw-
ing by a word w € X* and an initial configuration
g = (z,y,0). We introduce a special symbol o to
mark the end of each word. Given a sequence of strokes
obtained from a drawing, we represent it by a sequence
W e (¥ U{os})* discarding the initial configurations
of each stroke. We can think of this sequence as be-
ing generated by a Markov process. From training data,
we can compute a Markov model that assigns a condi-
tional probability to each symbol. A k-th order Markov
model takes into account only the immediate k previous
symbols. When k = 0, this is called a unigram model
and when k£ = 1, it is called a bigram model. We also
consider a variable order model in which the order is
adjusted based on the available statistics. In particular,
we use prediction by partial matching (PPM) [3] which
is an effective method for compressing text.

We evaluate the performance of a language model
by computing its cross-entropy on a test set. Given a
language model P, and a sequence W representing a
drawing, the cross-entropy is ﬁ Z‘Lvll —log P,,,(W;)
which can be interpreted as the expected number of bits
required to represent a symbol of .

111

P(o)
0.2
0.1
0.0 0102 g8 0150 f

Figure 5. The unigram model obtained
from the “smurfs” dataset.

5 Results

We experimented with two datasets: “smurfs” and
“incredibles”, each containing 15 drawing images. The
strokes in each image were obtained by tracing the con-
tours of the drawing using a graphics tablet. On aver-
age, there were about 66 strokes in a “smurfs” draw-
ing, and about 94 strokes in an “incredibles” drawing.
We used an alphabet consisting of 15 circular arcs with
evenly spaced curvatures to approximate the strokes of
the drawings. The length of each arc was set to one
eightieth of the width plus height of the drawing im-
age. The results of applying our dynamic program-
ming based algorithm on two of the drawings are shown
in Figure 4.

We obtained three language models: unigram, bi-
gram and 5-order PPM from a set of images reserved for
training and evaluated the performance of these mod-
els in the test set by doing 5-folds cross validation.
The performance results as measured by cross-entropy
are shown in Table 1. The unigram model obtained
from “smurfs” dataset is shown in Figure 5 (the uni-
gram model for “incredibles” was similar). The uni-
gram model suggests that the prior distribution of arcs
are symmetric around the zero curvature corresponding
to a line segment. This is interesting because it supports
the common assumption about curvature that is being
made by most previous work on stroke extraction. The
performance of the bigram model was only slightly bet-
ter than the unigram model and the performance of the
higher-order PPM model was worse. That is in contrast
to the language models for text where a bigram model
is about 30 percent better than a unigram model and a
higher-order PPM model can provide up to 30 percent
improvement over a bigram model. Our results indi-
cate that by using a bigram model, the performance of
an interface for drawing can be enhanced by about 20
percent over an interface not using any language model.

< J_
A ?
\L
original in our 1anguage original in our language

Figure 4. Two drawings and their representation in our language.

Table 1. The entropy of hand drawings.

6 Conclusion

One of our current goals is to enable users with in-
put devices that are limited, low-bandwidth and possi-
bly noisy to draw pictures just as easily as they can write
text. Toward this end in this paper, we presented a sys-
tematic way to learn a probabilistic language model for
hand drawings. The language we chose consisted of
symbols that represented circular arcs. We presented
a dynamic programming based algorithm to approxi-
mate each stroke as a sequence of symbols. We com-
puted the expected number of bits to represent a symbol
with respect to n-gram models learned from two differ-
ent image sets. In these datasets, higher-order models
gave only a small or no improvement over a unigram
model. It was interesting to see that even with a low-
order model computed from a small set of data, we were
able to get about 20 percent improvement. In future
work, it would be interesting to see how the model per-
formance changes for different and larger datasets. We
also want to characterize the influence of the symbol
scale and the alphabet size on the results. Applications

112

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Dataset Language model | Entropy of our language model to writer identification and hand
smurfs none (uniform) 4 gesture recognition as well as to the task level control of
smurfs unigram 3.36 mobile vehicles such as wheel chairs are also of interest.
smurfs bigram 3.30
smurfs 5-order PPM 3.60 References
incredibles | none (uniform) 4
?ncred%bles un.igram 3.23 [1] A. Akce, M. Johnson, and T. Bretl. Remote teleoperation
incredibles bigram 3.12 of an unmanned aircraft with a brain-machine interface:
incredibles 5-order PPM 345 Theory and preliminary results. In Robot. and Autom.

Proceedings. IEEE Int. Conf. on, May 2010.

R. Begleiter, R. El-Yaniv, and G. Yona. On prediction
using variable order markov models. Journal of Artificial
Intelligence Research (JAIR), 22:385-421, 2004.

J. Cleary and 1. Witten. Data compression using adap-
tive coding and partial string matching. Communications,
IEEE Transactions on, 32:396—402, 1984.

E. Felton, N. L. Lewis, S. A. Wills, R. G. Radwin, and
J. C. Williams. Neural signal based control of the Dasher
writing system. [EEE EMBS Conf. Neural Engr., pages
366-370, 2007.

H. Freeman. On the encoding of arbitrary geometric
configurations. Electronic Computers, IRE Trans. on,
10:260-268, 1961.

J. H. Horng and J. T. Li. A dynamic programming ap-
proach for fitting digital planar curves with line segments
and circular arcs. Pattern Recognition Letters, 22:183—
197, 2001.

C. Manning and H. Schiitze. Foundations of statistical
natural language processing. MIT Press, 2002.

S. C. Pei and J. H. Horng. Optimum approximation of
digital planar curves using circular arcs. Pattern Recog-
nition, 29:383-388, 1996.

D. J. Ward, A. E Blackwell, and D. J. C. MacKay.
Dasher: A gesture-driven data entry interface for mobile
computing. Human-Computer Interaction, 17:199-228,
2002.

