
Maximum Entropy Inverse Reinforcement Learning
in Continuous State Spaces with Path Integrals

Navid Aghasadeghi and Timothy Bretl

Abstract— In this paper, we consider the problem of inverse
reinforcement learning for a particular class of continuous-time
stochastic systems with continuous state and action spaces, un-
der the assumption that both the cost function and the optimal
control policy are parametric with known basis functions. Our
goal is to produce a cost function for which a given policy,
observed in experiment, is optimal. We proceed by enforcing
a constraint on the relationship between input noise and input
cost that produces a maximum entropy distribution over the
space of all sample paths. We apply maximum likelihood
estimation to approximate the parameters of this distribution
(hence, of the cost function) given a finite set of sample paths.
We iteratively improve our approximation by adding to this
set the sample path that would be optimal given our current
estimate of the cost function. Preliminary results in simulation
provide empirical evidence that our algorithm converges.

I. INTRODUCTION

Inverse reinforcement learning (IRL) is the problem of
recovering a cost function that is consistent with observations
of optimal or “expert” trajectories and with a given dynamic
model [1]. In some cases, for example in the study of human
motor control, it is precisely this cost function that we want
to know. In other cases, imitating the behavior of an expert
might be the goal. IRL problems are of interest in a wide
range of applications, from basic science [2], [3] to optimal
control of aircraft [4] and more recently aerobatic helicopter
flight [5] within the robotics community.

In this paper, we propose an approach to IRL for a
particular class of continuous-time stochastic systems with
continuous state and action spaces. We begin by assuming
that both the cost function and the optimal control policy are
parametric with known basis functions, or in other words that
these two functions are both weighted linear combinations
of known features. Our IRL problem is then to recover the
weights that describe the cost function given the weights that
describe the policy.

To simplify this problem, we further assume that noise is
additive in the input and that the cost function is quadratic
in the input, with a weight that is inversely proportional
to the variance of the noise. This assumption is reasonable
in practice, since it assigns high cost to inputs with low
variance, i.e., to inputs that are the most reliable. It has
also been made before by [6]–[8], in order to solve the
“forward” reinforcement learning problem more efficiently.

N. Aghasadeghi is with the Department of Electrical and Computer
Engineering and T. Bretl is with the Department of Aerospace Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
{aghasad1,tbretl}@illinois.edu

In that case, this assumption transforms the Hamilton-Jacobi-
Bellman (HJB) equation into a second order linear partial
differential equation (PDE) and turns the problem of re-
inforcement learning into the problem of approximating a
stochastic path integral. Similar assumptions have been made
by others, for example requiring the cost function to have the
form of a KL-divergence [9], and for much the same reason.

For IRL, our assumption about the relationship between
input noise and inputs cost leads to a closed form maxi-
mum entropy distribution on all sample trajectories. We can
proceed by applying a maximum-likelihood (ML) estimation
to find the parameters of this distribution, which maximize
the likelihood of observing the optimal policy, given a set
of sampled trajectories. To find the parameters of the max-
imum entropy distribution, we utilize the iterative scaling
method [10], [11]. This ML procedure leads to an estimated
cost function, given a finite set of sampled trajectories.
The problem of estimating a cost function given a finite
set of trajectories, however, highly depends on the sampled
trajectories. We thus introduce a cost updating algorithm
which iteratively updates the estimate of the cost function.
This algorithm iteratively adds to the set of all trajectories
the sample trajectory which is optimal with respect to the
current estimate of the cost function.

A similar approach to IRL was taken by [12], and indeed
we drew direct inspiration from this prior work. The main
difference between this approach and our own is that [12]
does not consider updating the set of sampled trajectories.
The algorithm in [12] should therefore be compared with
the first component of our IRL method, namely the ML
estimation. Moreover, as noted by the authors of [12], the
optimization process used to estimate the cost function was
not yet fully explored, and thus efficient implementations
of the algorithm had not been proposed at the time of
publication.

Our approach to IRL is also similar to the one of [13].
Both approaches rely on solving a sequence of reinforcement
learning (RL) problems (equivalently, a sequence of optimal
control problems) with candidate cost functions in order to
estimate the unknown, true cost function. One difference be-
tween [13] and our own work is that we explicitly deal with
continuous state and action spaces and use the path integral
formulation to solve the forward RL problem, while [13]
does not make use of a certain technique to solve this
problem, and uses state discretization to solve RL problem
in their experiments. The other recent work [5] also moves
towards using a continuous state and action spaces. The more

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 1561

fundamental difference is that our approach also does not rely
only on solving reinforcement learning problems in order to
get information about the cost function—we use an initial
set of sampled trajectories as well, from which we gain a
lot of information. This same property is exhibited by [14],
although in that case by making more restrictive assumptions
about the cost function and about the nature of the control
inputs.

There is a strong connection between what we propose and
the MaxEnt approach [15], since this approach also considers
parameter estimation on a maximum entropy distribution.
However, [15] assumes discrete state/action spaces.

The rest of this paper proceeds as follows. Section II
describes the system model we will consider, reviews an
existing approach to reinforcement learning based on this
model, and provides a formal statement of the IRL problem.
Section III gives our solution to the IRL problem. Section IV
evaluates the performance of our solution algorithm in sim-
ulation. We conclude in section V with a brief discussion of
opportunities for future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we will first introduce our system model.
Subsequently, we will talk about the problem of optimal
control with PI2 [8] as a stepping stone to introducing our
proposed inverse reinforcement learning problem statement
and algorithm.

A. System Model

We consider a dynamic system with the following contin-
uous state-space representation:

ẋt = f(xt) +G(xt)
(
ut + εt

)
, (1)

where xt is the state of the trajectory at each time t ≥ 0 and
xt ∈ Rn×1. The passive dynamics of the state are governed
by f(xt) ∈ Rn×1, and the control matrix is denoted by
G(xt) ∈ Rn×p. The vector ut ∈ Rp×1 is the control vector,
and εt is a gaussian noise with mean zero and variance Σε.

Given the dynamics in equation (1), we can generate finite
horizon trajectories starting at ti and ending at tN denoted
by τti = (xt, ti ≤ t ≤ tN). Furthermore, we define the cost
of a trajectory τti by R(τti) as the following:

R(τti) = φ(xtN) +

∫ tN

ti

(
qt(xt) +

1

2
uTt Rut

)
dt, (2)

where φ(xN) represents the terminal cost, qt represents an
arbitrary state dependent cost, and 1

2u
T
t Rut with a positive

semi-definite matrix R, denotes the quadratic cost assigned
to the inputs.

We talk about two problems associated with this system.
First, in section II-B, we address optimal control, which is
the problem of finding the set of inputs ut, which minimizes
the following value function:

V (xti) = min
uti:tN

Eτi
[
R(τti)

]
, (3)

where the expectation Eτi is taken over all of the trajectories
starting at the state xti .

Solving the stochastic optimal control in its most general
form is very difficult. Therefore, approximate methods are
developed to solve this problem. In section II-B, we will
talk about one such approach, which makes certain structural
assumptions that are still reasonable in practice.

Additionally, we talk about the IRL problem in section II-
C. Inverse reinforcement learning is the problem of re-
covering the cost function in (2), given the knowledge of
the dynamics of the system (1), and the optimal policy,
π∗ = arg minπ Eτ

[
R(τ)

]
. Here we denote policies by π,

and we define them as a mapping from the state of the system
xt, to control inputs ut, so we have: π : Rn×1 → Rp×1.

Similar to solving the stochastic optimal control problem,
solving IRL problems is challenging as well. Additionally,
IRL problems suffer from being ill-posed, i.e. different
cost functions can result in the same optimal policy. In
order to deal with these difficulties, we will make certain
reasonable assumptions, and we will model the cost function
as a weighted linear combinations of features, and we will
introduce and address the IRL problem in section II-C.

B. Reinforcement Learning

In this section, we address the approach taken to solve (3),
based on the PI2 approach [8]. We begin by performing
an Euler discretization of the dynamic system in (1) in the
following way:

xi+1 = xi + f(xi)∆t+G(xi)
(
ui∆t+ εi

√
∆t

)
, (4)

where ∆t represents a constant time step. The symbol τi,
now represents a trajectory discretized in time and starting
at xi, τi = (xi, ..., xN). The optimal control is the problem
of finding a sequence of inputs ui, ..., uN such that:

V (xi) = min
ui,...,uN

Eτi
[
R(τi)

]
, (5)

where the cost R(τi) is the discrete counter part of the cost
function (2). Authors in [8], based on previous work of [6]
and [7], propose an approach to solve this problem given
the assumption that γR−1 = Σε, for a constant γ. This
assumption imposes high costs on controls that are less noisy,
and low costs on controls with high noise. This assumption
makes intuitive sense since it is reasonable to assume a
low cost for a very noisy and unreliable control input, and
vice versa. Given this assumption, the paper [8] proposes
an approach to solve the stochastic optimal control problem
with dynamics (4), and value function defined by (5). The
solution relies on changing the optimal control problem to an
inference problem that involves computing a path integral.

Finding a solution to (5) requires finding optimal values
for all input vectors ui, ..., uN , and thus could still be compu-
tationally expensive. In order to further simplify the problem,
the paper [8] considers using parameterized policies, with a
parameter vector θ. Finding the best parameterized policy
then reduces to finding the optimal vector of parameters θ∗.

1562

As a special case of parameterized policies, we consider
using the Dynamic Movement Primitives (DMP) introduced
in [16]. These policies are characterized by the following
set of equations, which we have written in the form seen in
equation (1): ẋt

żt
ẏt

 =

 −αxt
yt

αz(βz(g − yt)− zt)

+

 01×p
01×p

g(c)T
t

 (θ+εt)

In the above DMP equations, we are assuming that the
system in (1) can be partitioned into a directly and non-
directly actuated parts (for more details see [8]). The DMP
is then partitioned as yt = x(c)

t , and (xt, zt)
T = x(m)

t , where
x(c)
t and x(m)

t are the actuated and non-directly actuated parts
of the system (1). Moreover, x and z are internal states
of the DMP and α, αz and βz are time constants. These
equations model a learnable point attractor starting at yt0
and moving to the goal state g. The policy is parameterized
by θ, which enters the equations linearly, and allows different
shapes for trajectories. The basis functions for each time t
are represented by gt ∈ Rp×1 and defined as follows:

[gt]j =
wjxt∑p
k=1 wk

(g − yt0),

wj = exp(−1

2
hj(xt − cj)2),

where hj is the bandwidth and cj is the center of the
Gaussian kernels [16], [17].

The path integral formulation [8] is used to solve the
optimal control problem. This formulation of optimal control,
along with DMP equations, leads to the notion of a path cost
S(τ) defined below:

S(τi,m) =φN (τi,m) +

N−1∑
j=i

qj(τi,m) (6)

+
1

2

N−1∑
j=i+1

(θ +Mj,mεj,m)TR(θ +Mj,mεj,m)

Mj,m =
R−1gj,mgTj,m
gTj,mR−1gj,m

,

where the index m in the equations above, is the index
of the chosen trajectory. Moreover, gj,m denotes the basis
functions of the DMP for trajectory τi,m at time step j.

Additionally, the path integral framework provides a con-
venient probability distribution over trajectories, using the
path costs defined in (6). The probability of a specific
trajectory (or portion of a trajectory) τi,m from the set
of sampled trajectories is denoted by P (T = τi,m). The
probability distribution over the given set of all K sampled
trajectories, denoted by Ω = {τ0,1, ..., τ0,m, ..., τ0,K}, has
the following form:

P (T = τi,m|Ω) =
e−

1
λS(τi,m)∑K

k=1 e
− 1
λS(τi,k)

,

Lastly, the optimal control is solved by iteratively updating
the parameter vector θ until convergence is reached using the
following increments δθi:

δθi =

K∑
k=1

P (τi,k)Mi,kεi,k (7)

In the next section, we introduce the statement of IRL
problem. Note that in the remainder of the paper, we only
deal with complete trajectories and we will replace the
notation τ0,m with τm.

C. Inverse Reinforcement Learning
The IRL problem addressed in this paper is recovering

the cost function (2) given the dynamics of the system
in equation (4) and the optimal policy parameter θ∗. To
approach this problem, we model the path cost function as
a weighted linear combination of a set of features (as we
will describe in detail in the remaining of this section.) This
leads to S(τ) = β∗

T
Φ(τ), where Φ(τ) is the value of the

feature for trajectory τ and β∗ are the weights of the features.
Equivalently, this leads to a weighted linear form of R(τ)

written as R(τ) = β∗
T

Φ̃(τ).
Given this assumption, the inverse reinforcement learning

problem is:

β̂ = arg max
β

P (θ∗|β,Ω) (8)

The optimization (8) attempts to find the most likely set of
weights β̂ which define the cost function, given observation
of the optimal policy, parameterized by θ∗, and a set of
sampled trajectories Ω. As we will see in Section III, the
optimization in (8) is really composed of two problems. The
first problem is finding the parameters β̂ given the optimal
policy and given a set of sampled trajectories. The second
problem is finding a set of sampled trajectories, which would
lead to better estimates of the cost function parameters β̂.

To write the path cost as S(τ) = βTΦ(τ), we can consider
the costs qi and φN and the matrix R to be parameterized
as qi = βTq ψi, φN = βφNψN and R = βRR̂, for some
known features ψi, ψN and known matrix R̂. (Note that in
general and unless otherwise noted, if φ is a feature, and
τ = (x0, ..., xN) is a trajectory, then φ(τ) =

∑N
i=0 φ(xi).)

The cost for a trajectory τm = (x0, ..., xN) can be written
as S(τm) = βTΦ(τm), where βT = [βTq , βR, βφN], and:

Φ(τm) =

 ∑N−1
i=0 ψi(τm)

1
2

∑N−1
i=1 (θ +Mi,mεi,m)T R̂(θ +Mi,mεi,m)

ψN (xN)

 .

Equivalently, we can write R(τm) = βT Φ̃(τm) where
βT = [βTq , βR, βφN] and:

Φ̃(τm) =

 ∑N−1
i=0 ψi(τm)

1
2

∑N−1
i=1 uTi R̂ui,
ψN (xN)

 .

In the next section, we introduce our method of approach
to this problem. In particular, we discuss how to solve the
ML estimation (8) for a given Ω, and also how to construct
sets of sampled trajectories Ω.

1563

III. METHOD OF APPROACH

In this section, we will describe our solution approach to
the IRL problem described in II-C. As discussed, we propose
finding the parameter β by performing the maximization
in (8) given the nominal θ∗. We propose using a nominal tra-
jectory τ∗ instead of the parameter θ∗, as we will show that
there is a one-to-one correspondence between the parameters
θ of the DMP equations, and a generated nominal trajectory.
The nominal trajectory τ∗ is the resulting trajectory from the
DMP equations where θ = θ∗ and the noise ε is set to zero.
To show the one-to-one correspondence note the following.
If two parameter vectors θ1 and θ2 lead to the same nominal
trajectory τ , then we must have that gTi θ1 = gTi θ2. This
does not occur if θ1 6= θ2, since the vector g forms a
basis function, and thus no two different parameters can lead
to the same nominal trajectory. Therefore, we perform the
following maximization instead of the maximization in (8):

max
β

P (T = τ∗|β,Ω) = max
β

e−
1
λ (βTΦ(τ∗))∑K

k=1 e
− 1
λ (βTΦ(τk))

, (9)

where τ∗ is also included in the set of all trajectories, i.e.
τ∗ ∈ Ω = {τ1, ..., τK}.

The IRL approach described by equation (9), generalizes
to all parameterized policies that can be written in the form of
the dynamic equations (4), and where the policies are defined
by a parameterized combination of some basis functions,
similar to what we see in the case of the DMPs.

The maximization in (9) is done using a set of K sampled
trajectories. Note that in order to have an exact probability
distribution over trajectories, we would need to sample all
possible trajectories, and replace the sum in the denominator
of equation (9) with an integral. Instead, to have an imple-
mentable version of this probability, we form an approximate
probability by sampling trajectories and summing over all the
sampled trajectories.

In order to solve for the maximizing β in equation (9),
we are faced with two problems. First, given the nominal
trajectory τ∗, and K overall sampled trajectories τ1, ..., τK ,
we have to estimate the optimal parameters of the distribu-
tion. We will approach this problem using ML estimation.
Secondly, we require K sample trajectories that provide us
with an accurate final estimate of the parameters β. The
choice of the K sampled trajectories significantly affects
the estimation of the β parameters. Moreover, choosing
effective sampled trajectories could be very hard in different
applications. We will approach this problem using the idea
of cost updates which iteratively samples trajectories, and
improves the estimates in each step of our simulation.

A. Iterative Scaling Algorithm

Solving the maximization (9) directly is not easy, due
to the normalizing denominator. However, we can use the
Iterative Scaling Algorithm [10], [11], which solves for
parameters β iteratively. This algorithm solves for the pa-
rameters β to ensure that the empirical mean of the features
equals the probabilistic mean of them. More precisely, given

observed nominal trajectory τ∗, the algorithm updates the
parameters of a Gibbs distribution according to:

βt+1,n = βt,n − ln
φn(τ∗)

Eqβtφn
, (10)

Eqβtφn =

K∑
k=1

P (T = τk|βt)φn(τk). (11)

The subscript n denotes the n-th element of the vector in
the above equations. Note that equation (10) is updating the
parameters β in order to produce a Gibbs distribution with a
feature average value equal to the empirical feature average.

B. Cost Updating Algorithm

The idea of a cost updating algorithm stems from the
fact that the sum over the set of sampled trajectories Ω is
merely an approximation of the denominator of the prob-
ability distribution (9). Thus, the cost function recovered
from the ML estimation will also be an approximate cost
function. In other words, the optimal trajectory with respect
to the estimated cost function is not necessarily equal to the
nominal trajectory τ∗.

Intuitively, this effect is an outcome of poor sampling
of the space of trajectories. When the sampled trajectories
all have rather high costs with respect to the true cost
function, then even a bad approximation of the cost function
can promise the minimum cost for the observed trajectory.
However, if the set of sampled trajectories, also consists of
low cost trajectories with respect to the true cost function,
inaccurate estimates of the cost function might cause the ob-
served optimal trajectory not to have the smallest cost, thus a
better estimate of the cost function is obtained. To overcome
this issue, we will introduce an algorithm, which iteratively
samples trajectories, and updates an estimate of the cost
function. In this algorithm, we will use Ω0 = {τ1, ..., τK}
to denote the set of all initial sampled trajectories, which
also includes the nominal trajectory τ∗. Moreover, we will
use τ̂t to denote a sampled trajectory at iteration t to be
added to the set of all trajectories, and we will define
Ωt+1 = Ωt∪{τ̂t+1}. With these definitions and explanations,
we will now introduce the following iterative algorithm:

Algorithm: Given nominal observed trajectory τ∗, the
initial set of all trajectories Ω0 = {τ1, ..., τK}, an initial
value λ0 for the λ temperature, and an unknown cost function
S(τ) = β∗

T
Φ(τ), do the following for each iteration t until

termination:
1) Solve the ML β̂t = arg maxβ P (T = τ∗|β,Ωt).
2) Solve optimal control to find:

τ̂t+1 = arg minτ β̂
T

t Φ(τ).
3) Add trajectory to the set of all trajectories:

Ωt+1 = Ωt ∪ {τ̂t+1}.
4) Let ∆t = |β̂

T

t Φ(τ∗) − minτ∈Ωt\{τ∗} β̂
T

t Φ(τ)|. If
the change in the improvement is small, i.e. if∣∣∆t+1−∆t

∆t+1

∣∣ < δ, then λt+1 ← λt/(1 + κ), for κ > 0.
5) If λt+1 < λthr then terminate, otherwise t ← t + 1

and go back to step 1.

1564

The above algorithm, explores the regions in the space
where low cost trajectories exist under an estimated cost
function. If these low cost trajectories are not close to the
nominal trajectory τ∗, the addition of these trajectories τ̂ to
the set of all sampled trajectories will improve the estimation
of the cost function. Moreover, we are utilizing a simple
annealing approach by reducing the temperature, which
showed to improve the convergence rate in simulations.

The intuition behind this algorithm is the following. If the
estimated cost function is far from the true cost function,
there could be optimal trajectories derived from this esti-
mated cost function that actually have a lower cost compared
to the observed optimal trajectory. However, after another
iteration, the algorithm makes sure that a cost function is
recovered that results in the observed trajectory being the
most likely. To do so, the algorithm attempts to find a better
estimate of the cost function.

C. Comparison with Existing Methods

Several methods for solving the IRL problem for discrete
MDP and continuous state space systems have been intro-
duced in the literature. Here we will provide a review of
some of these methods, and we will discuss the relationship
between our proposed algorithm and these works, and the
pros and cons of the different approaches.

One of the early approaches to IRL was by [1]. This
approach later led to the apprenticeship learning algorithm
developed in [13]. These works use MDPs and a cost
function that is a weighted linear combination of predefined
features. There are clear similarities between our proposed
algorithm and the algorithm developed in [13]. First of all,
both are based on the idea of matching the empirical averages
of the demonstrated optimal trajectories. In our algorithm,
this is done in the iterative scaling algorithm, where we
aim to find a maximum entropy distribution which has an
average equal to the empirical average. Authors in [13] also
try to find a policy with averages close to the empirical
average. Moreover, there is an intuitive similarity between
the maximum entropy ML estimation in our algorithm and
the max-margin in [13]. Both these methods try to estimate
feature weights that will in some sense ensure the lowest
cost for the optimal trajectory, and higher costs for the other
sampled trajectories, thus introducing some margin. Addi-
tionally, both algorithms solve an optimal control problem
in order to find new sample policies/trajectories to add to
the set of all policies/trajectories.

The algorithm developed in [13], does not make use of
a particular forward optimal control algorithm, and relies
on discretization of the space to solve the forward optimal
control problem. The discretization, for high-dimensional
continuous problems, comes at a cost of higher computa-
tional complexity, since the algorithms to solve the optimal
control problem are not very efficient. In contrast, our
algorithm deals directly with continuous state spaces, and
relies on the path integral formulation, which has shown
promise to solve high dimensional optimal control problems
with a reasonable computational complexity. Moreover, the

iterative scaling algorithm, implemented in Matlab, was not
computationally expensive. Thus we believe the proposed
approach could be applicable to high dimensional problems
that were thought to be infeasible before.

In addition to the discussed approaches, more recently
an IRL approach [12] based on [8] has been developed
for continuous state spaces. This approach, does not require
solving the optimal control problem, however, it does suffer
from the trajectory sampling problem that we have discussed
in our paper. In order to approximate an integral over all
trajectories, a summation over only a finite set of trajectories
is used. Therefore, the selection of this set of trajectories
highly affects the result of the IRL problem. Moreover, as
the authors in [12] also point out, the optimization problem
done in this algorithm is not fully studied, and more efficient
algorithms have to be developed. Also, the performance of
the algorithm depends on the heuristic selection of regular-
ization parameters and objective function weighting, which
would influence the result of the experiment.

IV. INITIAL EVALUATION

We performed a simulation similar to the one in [12]. We
generated six features, each feature being a sum of many
Gaussians with random means and covariance matrices. We
denote the features by φi and the wights by βi. We used
a 2-D point mass control system defined by the following
DMP equations:

ẍ =
1

m
(−bẋ+ u),

u = mẍd + bẋ+ kP (xd − x) + kD(ẋd − ẋ),

where the desired signal to follow xd is the output of the
DMP y, i.e. xd = y, ẋd = ẏ and ẍd = ÿ. These equations
are discretized and integrated forward starting from the origin
in a 2-D space. The goal is to move the point mass to the
final point y = [1, 1], with minimum cost. We defined the
cost function to be the following:

S(τ) = βTΦ(τ)+

C1(xtN − [1, 1]T)T (xtN − [1, 1]T) + C2(ẋTtN ẋtN)+

C3

2

N−1∑
i=1

(θ +Mti,jεti,j)
T R̂(θ +Mti,jεti,j),

where the first term βTΦ(τ) =
∑N
i=0 β

TΦ(xti) reflects the
cost of the trajectory due to the sum of Gaussian features.
The second and third term enforce costs on terminal position
and velocity. Lastly, the fourth term enforces a cost on the
inputs. In this simulation the constants C1, C2 and C3 are
known, and we will only be estimating the weights β.

We applied our algorithm to an observed optimal pol-
icy. To apply our algorithm, we sampled only 10 sam-
ple trajectories, with an eye towards future high dimen-
sional applications, where dense sampling of the space
is not practical. Fig. 1 demonstrates the recovered cost
function, and the best candidate trajectory with respect to
the final estimated cost function. For this simulation, we

1565

2 4 6 8 10 12 14 16 18 20
100

102

104

106

108

Iterations

C
os

t D
iff

er
en

ce

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 1. Top: Plot of ∆G
t = β∗Tφ(τ̂∗t)−β∗Tφ(τ∗) versus the number of

iterations t, where τ̂∗t = arg minτ∈Ωt\{τ∗} β̂
T
t φ(τ). Middle: The true

cost function, and the observed nominal trajectory, Bottom: Recovered cost
function and best candidate sample trajectory

also utilized some of the code provided in “http://www-
clmc.usc.edu/Resources/Software”.

A. Algorithm Performance

In order to evaluate the effectiveness of our algo-
rithm, we evaluate the global convergence of our algo-
rithm in simulations. To do so, first define the best can-
didate trajectory under the current cost estimate as τ̂∗t =

arg minτ∈Ωt\{τ∗} β̂
T

t Φ(τ) at every iteration, and subse-
quently define ∆G

t = β∗
T

Φ(τ̂∗t) − β∗TΦ(τ∗). Verifying
limt→∞∆G

t = 0 ensures global convergence to a cost
function which leads to a policy equal to the observed
nominal policy. We will evaluate this expression in Fig. 1.

V. DISCUSSION AND FUTURE WORK

We proposed an algorithm for inverse reinforcement learn-
ing in a framework where the policy and the cost function
were both a weighted linear combination of some known
basis functions, and where the input cost was inversely
proportional to the noise variance. We have shown using
simulations that this approach improves the estimates of the
cost function iteratively. These results should be considered
preliminary. A formal comparison between our approach and
existing IRL approaches, and a rigorous evaluation of the
performance of the algorithm are topics of future work.

VI. ACKNOWLEDGMENTS
This material is based upon work supported by the

National Science Foundation under Grant Nos. 0931871
and 0955088. The authors gratefully acknowledge Dr. Seth
Hutchinson, Javad Ghaderi, Abdullah Akce, Miles Johnson
and Samuel McCarthy for helpful comments.

REFERENCES

[1] A. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in Proceedings of the Seventeenth International Conference on
Machine Learning, 2000, pp. 663–670.

[2] E. Todorov, “Optimality principles in sensorimotor control,” Nature
neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[3] K. Kording and D. Wolpert, “The loss function of sensorimotor
learning,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. 26, p. 9839, 2004.

[4] M. Krstic and P. Tsiotras, “Inverse optimal stabilization of a rigid
spacecraft,” Automatic Control, IEEE Transactions on, vol. 44, no. 5,
pp. 1042–1049, 1999.

[5] P. Abbeel, A. Coates, and A. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” International Journal of Robotics
Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[6] H. Kappen, “An introduction to stochastic control theory, path integrals
and reinforcement learning,” Cooperative Behavior in Neural Systems,
vol. 887, pp. 149–181, 2007.

[7] B. van den Broek, W. Wiegerinck, and B. Kappen, “Graphical model
inference in optimal control of stochastic multi-agent systems,” Jour-
nal of Artificial Intelligence Research, vol. 32, no. 1, pp. 95–122,
2008.

[8] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized Path Integral
Control Approach to Reinforcement Learning,” Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[9] E. Todorov, “Efficient computation of optimal actions,” Proceedings
of the National Academy of Sciences, vol. 106, no. 28, p. 11478, 2009.

[10] J. Darroch and D. Ratcliff, “Generalized iterative scaling for log-linear
models,” The Annals of Mathematical Statistics, vol. 43, no. 5, pp.
1470–1480, 1972.

[11] S. Chen and R. Rosenfeld, “A survey of smoothing techniques for ME
models,” Speech and Audio Processing, IEEE Transactions on, vol. 8,
no. 1, pp. 37–50, 2002.

[12] M. Kalakrishnan, E. Theodorou, and S. Schaal, “Inverse Reinforce-
ment Learning with PI 2,” in The Snowbird Workshop, submitted to,
2010.

[13] P. Abbeel and A. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[14] K. Dvijotham and E. Todorov, “Inverse Optimal Control with Linearly-
Solvable MDPs,” in Proceedings of the Interntional Conference on
Machine Learning. Citeseer, 2010.

[15] B. Ziebart, A. Maas, J. Bagnell, and A. Dey, “Maximum entropy
inverse reinforcement learning,” in Proc. AAAI, 2008, pp. 1433–1438.

[16] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” Advances in neural information pro-
cessing systems, pp. 1547–1554, 2003.

[17] S. Schaal and C. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

1566

